Historique de Prof.Tenerife2009

Cacher les modifications mineures - Affichage de la sortie

Ligne 7 modifiée:
![[Tenerife2010report|Technical report]] (%red%in progress%%)
en:
![[Tenerife2010report|Technical report]]
21 mai 2010 à 11h02 par Martin -
21 mai 2010 à 11h02 par Martin -
Lignes 53-54 modifiées:
![[ListeMaterielTenerife2010|List of equipment]]
en:
![[ListeMaterielTenerife2010|List of equipments]]
21 mai 2010 à 11h00 par Martin -
Lignes 65-68 supprimées:
![[LiensTenerife2010|Liens]]

----

21 mai 2010 à 11h00 par Martin -
Lignes 69-82 supprimées:
!utilisation des ETC CRAQ

Dégagement offert est de 0,58 ETC confirmé par le FQRNT pour 3 ans débutant avec la session Automne 2008.
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. L'utilisation de ce dégagement est consigné ici:

http://spreadsheets.google.com/ccc?key=0AuiEg1ToyTykcDhReUtPRUNEQk1NX1RVa29JMlRZQXc&hl=fr


*Proposition d'un projet sur 3 mois TC mais réparti sur 6 mois à demi temps.




01 mars 2010 à 10h52 par Martin -
Lignes 64-211 modifiées:
!Modeling experiment

!!Modeling domain


The domain was choosen to include the main light sources which may have a significant effect on ORM and OT sites. We roughly estimated that considering Gran Canaria island is required at least for the modeling of the OT site. That island is somewhat far bot have an important lighting infrastructure.

We will try two resolution to evaluate the real advantage of working at the OLS nominal resolution (~1km). Modeling at a 2km resolution reduce the computation time by a factor of 4.

*Domain width=300km
*Domain height=150km
*NW corner= 28°53'0'' N , 18° 13' O''  (28.8833333,-18.2166666)
*NE corner= 28°53'0'' N , 15° 8' 7''    (28.8833333,-15.1352777)
*SW corner= 27°32'4'' N , 18° 13' O''  (27.5344444,-18.2166666)
*SE corner= 27°32'4'' N , 15° 8' 7''    (27.5344444,-15.1352777)
*Resolutions=1km, 2km

!!Ground luminosity data
*Resolution of 30 sec arc (~1km)
*Choose «stable light» to eliminate contamination from forest fire
*OLS download http://www.ngdc.noaa.gov/eog/maps/cgi-bin/public/ms/gcv2/dl
*OLS image extracted with coordinates show above [[Attach:F152003_v2_stable_lights_avg_vis.tif]]
*OLS images used for modeling are from version 4 product which have been acquired in 2008 (http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html). They are cloud free, and filtered for moon, glare, and auroras. The data are yearly composites averages and in the case of no data for a whole year, a dummy value of 254 have been set. All the physically realistic data range from 0 to 63 in relative radiances units. Data have been acquired between 19h30 and 21h30 local time. DMSP are in ''sun-synchronous'' polar orbits.
*Normalized preview from 2003 stable lights composite
Attach:F152003_v2_stable_lights_avg_vis.jpg
Since this image is in a lat-lon projection and giving that we are not on the equator, there is an horizontal strech in term of distance measurements. The mean latitude of the domain is 28.5307236deg, so the horizontal stretching is approximately 1/cos(lat)=1.13822

Giving a mean earth radius of 6371km, each pixel mesure approximately 6371*(30/3600)*(pi/180)=927 m on the Noth-South axis.

The later image may be resampled on a 400x300 grid which give a constant ground resolution on both axis of 1 km (the domain was choosen to cover 400x300 km). In fact that domaine insure a buffer region of at least 120km between an observatory and its nearest domaine limit. Giving that the model height is 30 km, this means that we can model zenith angles up to 76 deg. In fact our lowest angle measurements have been done at 75 deg from zenith. Images below show the resultant images for 1km resolution and 2 km resolution respectively.

Attach:F152003_v2_stable_lights_avg_vis_eqdist-1km.jpg

Attach:F152003_v2_stable_lights_avg_vis_eqdist-1km-col.jpg

Attach:F152003_v2_stable_lights_avg_vis_eqdist-2km.jpg

!!!Inventaire
A summary from private discussion with Javier Diaz-Castro


There is basically 2 distinct periods and 3 different zones which are summarize in tables below

!!!!Contribution to total flux before midnight
(:table border='1' width='80%':)
(:cellnr:)Zone
(:cell align='center':)Uplight
(:cell align='center':)Commercial (50%UP)
(:cell align='center':)Street 1(1%UP)
(:cell align='center':)Street 6 (6%UP)
(:cell align='left':)Street 0 (0%UP)
(:cell:)Total of Satellite
(:cellnr:)La Palma
(:cell align='center':)3.0%
(:cell align='center':)5%
(:cell align='center':)15%
(:cell align='center':)5%
(:cell align='left':)75%
(:cell:)100%
(:cellnr:)Tenerife W
(:cell align='center':)3.3%
(:cell align='center':)5%
(:cell align='center':)15%
(:cell align='center':)10%
(:cell align='left':)70%
(:cell:)100%
(:cellnr:)Tenerife E & other islands
(:cell align='center':)6.2%
(:cell align='center':)10%
(:cell align='center':)15%
(:cell align='center':)15%
(:cell align='left':)60%
(:cell:)100%
(:tableend:)


!!!!Contribution to total flux after midnight
(:table border='1' width='80%':)
(:cellnr:)Zone
(:cell:)Uplight
(:cell align='center':)Commercial (50%UP)
(:cell:)Street 1 (1%UP)
(:cell:)Street 6 (6%UP)
(:cell:)Street 0 (0%UP)
(:cell:)Total of satellite
(:cellnr:)La Palma
(:cell:)0.4%
(:cell align='center':)0%
(:cell:)8%
(:cell:)2%
(:cell:)40%
(:cell:)50%
(:cellnr:)Tenerife W
(:cell:)3.5%
(:cell align='center':)3%
(:cell:)10%
(:cell:)8%
(:cell:)40%
(:cell:)61%
(:cellnr:)Tenerife E & other islands
(:cell:)6.7%
(:cell align='center':)9%
(:cell:)10%
(:cell:)10%
(:cell:)50%
(:cell:)79%
(:tableend:)

!!!Generic lamps table
(:table border='1' width='80%':)
(:cellnr:)Generic name
(:cell align='center':)Model
(:cell align='center':)UpLight
(:cell align='center':)IES file
(:cell align='center':)Illumina file
(:cell align='center':)Image
(:cellnr:)Commercial
(:cell align='center':)-
(:cell align='center':)50%
(:cell align='center':)-
(:cell align='center':)[[Attach:iso_fctem_01.dat|iso_fctem_01.dat]]
(:cell align='center':)-
(:cellnr:)Street 1
(:cell align='center':)Indalux Villa
(:cell align='center':)1.1%
(:cell align='center':)[[Attach:3008554CANARIAS.ies|3008554CANARIAS.ies]]
(:cell align='center':)[[Attach:Indalux-Villa_fctem_01.dat|Indalux-Villa_fctem_01.dat]]
(:cell align='center':)Img:Indalux-Villa.jpg
(:cellnr:)Street 6
(:cell align='center':)COOPER cobrahead
(:cell align='center':)6.3%
(:cell align='center':)[[Attach:RY15H3AL.ies|RY15H3AL.ies]]
(:cell align='center':)[[Attach:cobrahead_fctem_01.dat|cobrahead_fctem_01.dat]]
(:cell align='center':)Img:cobrahead_RY_15x_Cooper.jpg
(:cellnr:)Street 0
(:cell align='center':)GE Euro-2
(:cell align='center':)0.2%
(:cell align='center':)[[Attach:9V148_70WHPS-curvedglass-EURO2.IES|9V148_70WHPS-curvedglass-EURO2.IES]]
(:cell align='center':)[[Attach:euro2_fctem_01.dat|euro2_fctem_01.dat]]
(:cell align='center':)Img:euro2-curvedglass_GE.jpg
(:tableend:)

!!Other input data

*Modis reflectance from band 1-7 global 250m [[http://modis-sr.ltdri.org/MAIN_PUBLICATIONS/Papers/atbd_mod09.pdf|Article]]
**Vermote, E. F., & Vermeulen, A. (1999). Atmospheric correction algorithm:  Spectral reflectances (MOD09), ATBD version 4.0.
*Numerical terrain model

en:

01 mars 2010 à 10h51 par Martin -
Lignes 1-2 ajoutées:
%center%[+++++Sabbatique Tenerife 2010+++++]%%
Lignes 6-14 modifiées:
(:toc:)

(:toc:)


(:toc:)

%center%[++++Sabbatique Tenerife 2010++++]%%

en:
01 mars 2010 à 10h50 par Martin -
Lignes 11-12 modifiées:
!Sabbatique Tenerife 2010
en:
%center%[++++Sabbatique Tenerife 2010++++]%%
01 mars 2010 à 10h49 par Martin -
Lignes 16-17 modifiées:

en:
%center%[++2010 IAC Invited Scientist project proposal++]%%
\\
\\
\\
\\

%center%Martin Aubé, Ph.D.%%


%center%CÉGEP de Sherbrooke, Canada%%

%center%Université de Sherbrooke, Canada%%

!!Title

%justify%Assessing the contribution from different parts of Canary islands to the hemispheric spectral sky luminance levels over European Northern Observatories.
!!Summary

%justify%We suggest to use a third generation sky luminance model which account for heterogeneous distribution of light fixtures, their photometry, the ground reflectance and topography along with hyperspectral sky luminance measurements to infer contribution of different zones of Canary islands to astronomical observation sites sky luminances. This sensitive study will allow the identification and evaluation of critical island zones. The project aim to identify and characterize zones at which any lighting level increase or decrease may have a larger impact on light pollution at both European Northern Observatory sites, and then help to control and/or reduce their light pollution levels.

01 mars 2010 à 10h48 par Martin -
Lignes 16-46 modifiées:
%center%[++2010 IAC Invited Scientist project proposal++]%%
\\
\\
\\
\\

%center%Martin Aubé, Ph.D.%%


%center%CÉGEP de Sherbrooke, Canada%%

%center%Université de Sherbrooke, Canada%%

!!Title

%justify%Assessing the contribution from different parts of Canary islands to the hemispheric spectral sky luminance levels over European Northern Observatories.
!!Summary

%justify%We suggest to use a third generation sky luminance model which account for heterogeneous distribution of light fixtures, their photometry, the ground reflectance and topography along with hyperspectral sky luminance measurements to infer contribution of different zones of Canary islands to astronomical observation sites sky luminances. This sensitive study will allow the identification and evaluation of critical island zones. The project aim to identify and characterize zones at which any lighting level increase or decrease may have a larger impact on light pollution at both European Northern Observatory sites, and then help to control and/or reduce their light pollution levels.

!!Methodology

%justify%As a first step, a measurement campaign will be made across Tenerife and La Palma islands but mainly over Observatorio del Teide (OT) and Observarorio de los Roques des los Muchachos (ORM). We aim  to get a relatively good angular sampling of the spectral sky brightness levels. This field campaign should involve the acquisition over at least 4 sampling sites (2 observatories and 2 near see level sites). For observatories sites, measurement should be made all over the sky at 15 deg., 30 deg. 60 deg. and 90 deg. above horizon. A part of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument, which will be used to accomplish observations, is the third version of the Spectrometer for Aerosol Night Detection (SAND-3). SAND-3 have been designed by CélesTech, a non profit research society. The instrument and relevant software are published under Gnu Public Licence (GPL) in order to ensure a maximum of accessibility to the scientific community. The spectrometer is robotized so that it may operate by its own during all night long. SAND have been used successfully for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, Kitt Peak National Observatory (KPNO), Fred Lawrence Whipple Observatory (FLWO), US Naval Observatory (USNO), Lowell and Mégantic). The field campaign proposed here may require more or less 2 month depending on clear sky conditions.

%justify%The second step of the project will be to acquire input database required to run our model called ILLUMINA (Aubé et al. 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (like Kocifaj 2007). First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements mulitangular dependence and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also used empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in its capability to simulate any heterogeneous distribution of a variety of light fixture with their own intensities, spectral dependences, and angular light output pattern. The model may also account for shadowing effects associated with topography, for gridded variation in ground reflectance and subgrid obstacles (trees, buildings, etc.). Explicit 1st and 2nd order scattering and extinction from aerosols and molecules and the vertical profile of atmospheric constituants is taken into account. ILLUMINA also compute optical impact of size distribution and composition of aerosol content which may be quite useful during pollution events like important biomass burning or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), and ground spectral reflectance. Model also requires typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensities will be obtained from a combination of local inventories, sattelite (DMSP-OLS) 2008 data and in-situ sampling. The inventory will be simplified according to some basic assumptions which will be validated by an expert. Ground spectral reflectance will be obtained from remotely sensed data of the MODerate-resolution Imaging Spectroradiometer (MODIS) (Vermote and Vermeulen 1999). Atmospheric pressure data will be taken from local meteorological station and aerosol optical properties from active NASA-AERONET sunphotometers (Holben et al. 2001) located on Tenerife island and from an portable sun photometer (Microtops-II) for La Palma.

%justify%The third step will be to run the model for each observing night with the complete input dataset and compare model results with a subset of sky luminance measurements. As stated earlier this step aimed to calibrate the model in order to fit observations. Then the remaining measurements will be used to map typical model errors.

%justify%Finally we will perform about 50 model runs. The goal of that experiment is to determine the contribution of each ground point to the sky luminance at each observing site so that ones should be able to infer the impact of local change in lighting device inventory. That kind of results will be extremely useful to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).


en:

01 mars 2010 à 10h48 par Martin -
Ligne 13 ajoutée:
![[Tenerife2010report|Technical report]] (%red%in progress%%)
01 mars 2010 à 10h46 par Martin -
Lignes 37-45 modifiées:
%justify%As a first step, a measurement campaign will be made across Tenerife and La Palma islands in order to get a relatively good angular sampling of the spectral sky brightness levels. This field campaign should involve the acquisition over at least 4 sampling sites (2 observatories and 2 near see level sites). For observatories sites, measurement should be made all over the sky at 15 deg., 30 deg. 60 deg. and 90 deg. above horizon. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument, which will be used to accomplish observations, is the third version of the Spectrometer for Aerosol Night Detection (SAND-3). SAND-3 have been designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. SAND have been used successfully for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, Kitt Peak National Observatory (KPNO), Fred Lawrence Whipple Observatory (FLWO), US Naval Observatory (USNO), Lowell and Mégantic). The field campaign proposed here may require more or less 2 month depending on clear sky conditions.

%justify%The second step of the project will be to acquire input database required to run our model called ILLUMINA
(Aubé et al. 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (like Kocifaj 2007). First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements mulitangular dependence and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also used empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in its capability to simulate any heterogeneous distribution of a variety of light fixture with their own intensities, spectral dependences, and angular light output pattern. The model may also account for shadowing effects associated with topography, for gridded variation in ground reflectance and subgrid obstacles (trees, buildings, etc.). Explicit 1st and 2nd order scattering and extinction from aerosols and molecules and the vertical profile of atmospheric constituants is taken into account. ILLUMINA also compute optical impact of size distribution and composition of aerosol content which may be quite useful during pollution events like important biomass burning or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), and ground spectral reflectance. Model also requires typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensities will be eobtained from a combination of local inventories, sattelite (DMSP-OLS) data and in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed data of the MODerate-resolution Imaging Spectroradiometer (MODIS) (Vermote and Vermeulen 1999). Atmospheric pressure data will be taken from local meteorological station and aerosol optical properties from active NASA-AERONET sunphotometers (Holben et al. 2001) located on Tenerife island.

%justify%The third step will be to run the model for each observing night with the complete input dataset and compare model results with the first half of sky luminance measurements. As stated earlier this step aimed to calibrate the model in order to fit observations. Then the second half of measurements will be used to map typical model errors.

%justify%Finally we will perform about 40
model runs. The goal of that experiment is to determine the contribution of each ground point to the sky luminance at each observing site so that ones should be able to infer the impact of local change in lighting device inventory. That kind of results will be extremely useful to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).

en:
%justify%As a first step, a measurement campaign will be made across Tenerife and La Palma islands but mainly over Observatorio del Teide (OT) and Observarorio de los Roques des los Muchachos (ORM). We aim  to get a relatively good angular sampling of the spectral sky brightness levels. This field campaign should involve the acquisition over at least 4 sampling sites (2 observatories and 2 near see level sites). For observatories sites, measurement should be made all over the sky at 15 deg., 30 deg. 60 deg. and 90 deg. above horizon. A part of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument, which will be used to accomplish observations, is the third version of the Spectrometer for Aerosol Night Detection (SAND-3). SAND-3 have been designed by CélesTech, a non profit research society. The instrument and relevant software are published under Gnu Public Licence (GPL) in order to ensure a maximum of accessibility to the scientific community. The spectrometer is robotized so that it may operate by its own during all night long. SAND have been used successfully for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, Kitt Peak National Observatory (KPNO), Fred Lawrence Whipple Observatory (FLWO), US Naval Observatory (USNO), Lowell and Mégantic). The field campaign proposed here may require more or less 2 month depending on clear sky conditions.

%justify%The second step of the project will be to acquire input database required to run our model called ILLUMINA (Aubé et al. 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (like Kocifaj 2007). First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements mulitangular dependence and atmospheric properties but relies on some basic assumptions about the geometry of
light distribution on the ground (circular cities) and ground homogeneity. They also used empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in its capability to simulate any heterogeneous distribution of a variety of light fixture with their own intensities, spectral dependences, and angular light output pattern. The model may also account for shadowing effects associated with topography, for gridded variation in ground reflectance and subgrid obstacles (trees, buildings, etc.). Explicit 1st and 2nd order scattering and extinction from aerosols and molecules and the vertical profile of atmospheric constituants is taken into account. ILLUMINA also compute optical impact of size distribution and composition of aerosol content which may be quite useful during pollution events like important biomass burning or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), and ground spectral reflectance. Model also requires typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensities will be obtained from a combination of local inventories, sattelite (DMSP-OLS) 2008 data and in-situ sampling. The inventory will be simplified according to some basic assumptions which will be validated by an expert. Ground spectral reflectance will be obtained from remotely sensed data of the MODerate-resolution Imaging Spectroradiometer (MODIS) (Vermote and Vermeulen 1999). Atmospheric pressure data will be taken from local meteorological station and aerosol optical properties from active NASA-AERONET sunphotometers (Holben et al. 2001) located on Tenerife island and from an portable sun photometer (Microtops-II) for La Palma.

%justify%The third step will be to run the model for each observing night with the complete input dataset and compare model results with a subset of sky luminance measurements. As stated earlier this step aimed to calibrate the model in order to fit observations. Then the remaining measurements will be used to map typical model errors.

%justify%Finally we will perform about 50
model runs. The goal of that experiment is to determine the contribution of each ground point to the sky luminance at each observing site so that ones should be able to infer the impact of local change in lighting device inventory. That kind of results will be extremely useful to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).

01 mars 2010 à 10h31 par Martin -
Lignes 33-34 modifiées:
%justify%We suggest to use a third generation sky luminance model which account for heterogeneous distribution of light fixtures, their photometry, the ground reflectance and topography along with hyperspectral sky luminance measurements to infer contribution of different zones of Tenerife and La Palma islands to astronomical observation sites sky luminances. This sensitive study will allow the identification and evaluation of critical island zones. The project aim to identify and characterize zones at which any lighting level increase or decrease may have a larger impact on light pollution at both European Northern Observatory sites, and then help to control and/or reduce their light pollution levels.
en:
%justify%We suggest to use a third generation sky luminance model which account for heterogeneous distribution of light fixtures, their photometry, the ground reflectance and topography along with hyperspectral sky luminance measurements to infer contribution of different zones of Canary islands to astronomical observation sites sky luminances. This sensitive study will allow the identification and evaluation of critical island zones. The project aim to identify and characterize zones at which any lighting level increase or decrease may have a larger impact on light pollution at both European Northern Observatory sites, and then help to control and/or reduce their light pollution levels.
01 mars 2010 à 10h30 par Martin -
Ligne 30 modifiée:
%justify%Assessing the contribution from different parts of Tenerife and La Palma islands to the hemispheric artificial spectral sky luminance levels over European Northern Observatories.
en:
%justify%Assessing the contribution from different parts of Canary islands to the hemispheric spectral sky luminance levels over European Northern Observatories.
01 mars 2010 à 10h29 par Martin -
Ligne 30 modifiée:
%justify%Assessing the contribution from different parts of Tenerife and La Palma islands to artificial spectral sky luminance levels over European Northern Observatories.
en:
%justify%Assessing the contribution from different parts of Tenerife and La Palma islands to the hemispheric artificial spectral sky luminance levels over European Northern Observatories.
01 mars 2010 à 10h12 par Martin -
Ligne 147 modifiée:
(:cell align='center':)1.55%
en:
(:cell align='center':)6.2%
01 mars 2010 à 10h11 par Martin -
Ligne 140 modifiée:
(:cell align='center':)0.84%
en:
(:cell align='center':)3.3%
01 mars 2010 à 10h10 par Martin -
Ligne 133 modifiée:
(:cell align='center':)0.75%
en:
(:cell align='center':)3.0%
01 mars 2010 à 10h08 par Martin -
Ligne 166 modifiée:
(:cell:)0.11%
en:
(:cell:)0.4%
Ligne 173 modifiée:
(:cell:)0.88%
en:
(:cell:)3.5%
01 mars 2010 à 10h06 par Martin -
Ligne 180 modifiée:
(:cell:)1.68%
en:
(:cell:)6.7%
01 mars 2010 à 07h40 par Martin -
Lignes 126-130 modifiées:
(:cell:)Uplight
(:cell:)Commercial (50%UP)
(:cell:)Street 1(1%UP)
(:cell:)Street 6 (6%UP)
(:cell:)Street 0 (0%UP)
en:
(:cell align='center':)Uplight
(:cell align='center':)Commercial (50%UP)
(:cell align='center':)Street 1(1%UP)
(:cell align='center':)Street 6 (6%UP)
(:cell align='left':)Street 0 (0%UP)
Lignes 133-137 modifiées:
(:cell:)0.75%
(:cell:)5%
(:cell:)15%
(:cell:)5%
(:cell:)75%
en:
(:cell align='center':)0.75%
(:cell align='center':)5%
(:cell align='center':)15%
(:cell align='center':)5%
(:cell align='left':)75%
Lignes 140-144 modifiées:
(:cell:)0.84%
(:cell:)5%
(:cell:)15%
(:cell:)10%
(:cell:)70%
en:
(:cell align='center':)0.84%
(:cell align='center':)5%
(:cell align='center':)15%
(:cell align='center':)10%
(:cell align='left':)70%
Lignes 147-151 modifiées:
(:cell:)1.55%
(:cell:)10%
(:cell:)15%
(:cell:)15%
(:cell:)60%
en:
(:cell align='center':)1.55%
(:cell align='center':)10%
(:cell align='center':)15%
(:cell align='center':)15%
(:cell align='left':)60%
01 mars 2010 à 07h36 par Martin -
Ligne 159 modifiée:
(:cell:)
en:
(:cell:)Uplight
Ligne 166 modifiée:
(:cell:)
en:
(:cell:)0.11%
Ligne 173 modifiée:
(:cell:)
en:
(:cell:)0.88%
Ligne 180 modifiée:
(:cell:)
en:
(:cell:)1.68%
01 mars 2010 à 07h35 par Martin -
Ligne 159 ajoutée:
(:cell:)
Ligne 166 ajoutée:
(:cell:)
Ligne 173 ajoutée:
(:cell:)
Ligne 180 ajoutée:
(:cell:)
01 mars 2010 à 07h34 par Martin -
Ligne 133 modifiée:
(:cell:)
en:
(:cell:)0.75%
Ligne 140 modifiée:
(:cell:)
en:
(:cell:)0.84%
Ligne 147 modifiée:
(:cell:)
en:
(:cell:)1.55%
01 mars 2010 à 07h32 par Martin -
Ligne 126 modifiée:
(:cell:)
en:
(:cell:)Uplight
01 mars 2010 à 07h32 par Martin -
Ligne 126 ajoutée:
(:cell:)
Ligne 133 ajoutée:
(:cell:)
Ligne 140 ajoutée:
(:cell:)
Ligne 147 ajoutée:
(:cell:)
01 mars 2010 à 07h18 par Martin -
Ligne 171 modifiée:
(:cell:)62%
en:
(:cell:)61%
01 mars 2010 à 05h48 par Martin -
Ligne 103 modifiée:
*Normalized preview from 2003 compsite
en:
*Normalized preview from 2003 stable lights composite
01 mars 2010 à 05h44 par Martin -
Lignes 110-111 modifiées:
Img:F152003_v2_stable_lights_avg_vis_eqdist-1km.jpg Img:F152003_v2_stable_lights_avg_vis_eqdist-1km-col.jpg Attach:F152003_v2_stable_lights_avg_vis_eqdist-2km.jpg
en:

Attach
:F152003_v2_stable_lights_avg_vis_eqdist-1km.jpg

Attach
:F152003_v2_stable_lights_avg_vis_eqdist-1km-col.jpg

Attach:F152003_v2_stable_lights_avg_vis_eqdist-2km.jpg
01 mars 2010 à 05h39 par Martin -
Lignes 110-111 modifiées:
Attach:F152003_v2_stable_lights_avg_vis_eqdist-1km.jpg Attach:F152003_v2_stable_lights_avg_vis_eqdist-1km-col.jpg Attach:F152003_v2_stable_lights_avg_vis_eqdist-2km.jpg
en:
Img:F152003_v2_stable_lights_avg_vis_eqdist-1km.jpg Img:F152003_v2_stable_lights_avg_vis_eqdist-1km-col.jpg Attach:F152003_v2_stable_lights_avg_vis_eqdist-2km.jpg
01 mars 2010 à 05h37 par Martin -
Ligne 103 modifiée:
*Normalized preview
en:
*Normalized preview from 2003 compsite
01 mars 2010 à 05h35 par Martin -
Ligne 102 modifiée:
*OLS images used for modeling are from version 4 product which have been acquired in 2008 (http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html). They are cloud free, and filtered for moon, glare, and auroras. The data are yearly composites averages and in the case of no data for a whole year, a dummy value of 254 have been set. All the physically realistic data range from 0 to 63 in relative radiances units. Data have been acquired between 19h30 and 21h30 local time. DMSP are in "sun-synchronous" polar orbits.
en:
*OLS images used for modeling are from version 4 product which have been acquired in 2008 (http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html). They are cloud free, and filtered for moon, glare, and auroras. The data are yearly composites averages and in the case of no data for a whole year, a dummy value of 254 have been set. All the physically realistic data range from 0 to 63 in relative radiances units. Data have been acquired between 19h30 and 21h30 local time. DMSP are in ''sun-synchronous'' polar orbits.
01 mars 2010 à 05h34 par Martin -
Ligne 102 modifiée:
*OLS images used for modeling are from version 4 product which have been acquired in 2008. They are cloud free, and filtered for moon, glare, and auroras. The data are yearly composites averages and in the case of no data for a whole year, a dummy value of 254 have been set. All the physically realistic data range from 0 to 63 in relative radiances units. Data have been acquired between 19h30 and 21h30 local time. DMSP are in "sun-synchronous" polar orbits.
en:
*OLS images used for modeling are from version 4 product which have been acquired in 2008 (http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html). They are cloud free, and filtered for moon, glare, and auroras. The data are yearly composites averages and in the case of no data for a whole year, a dummy value of 254 have been set. All the physically realistic data range from 0 to 63 in relative radiances units. Data have been acquired between 19h30 and 21h30 local time. DMSP are in "sun-synchronous" polar orbits.
01 mars 2010 à 05h14 par Martin -
Ligne 102 modifiée:
*OLS images used for modeling are from version 4 product which have been acquired in 2008. They are cloud free, and filtered for moon, glare, and auroras. The data are yearly composites averages and in the case of no data for a whole year, a dummy value of 254 have been set. All the physically realistic data range from 0 to 63 in relative radiances units.
en:
*OLS images used for modeling are from version 4 product which have been acquired in 2008. They are cloud free, and filtered for moon, glare, and auroras. The data are yearly composites averages and in the case of no data for a whole year, a dummy value of 254 have been set. All the physically realistic data range from 0 to 63 in relative radiances units. Data have been acquired between 19h30 and 21h30 local time. DMSP are in "sun-synchronous" polar orbits.
01 mars 2010 à 05h12 par Martin -
Ligne 102 ajoutée:
*OLS images used for modeling are from version 4 product which have been acquired in 2008. They are cloud free, and filtered for moon, glare, and auroras. The data are yearly composites averages and in the case of no data for a whole year, a dummy value of 254 have been set. All the physically realistic data range from 0 to 63 in relative radiances units.
01 mars 2010 à 04h55 par Martin -
Lignes 104-105 modifiées:
Since this image is in a lat-lon projection and giving that we are not on the equator, there is an horizontal strech in term of distance measurements. The mean latitude of the domain is 28.2088888deg, so the horizontal stretching is approximately 1/cos(lat)=1.13477735
Attach:F152003_v2_stable_lights_avg_vis_eqdist.jpg
en:
Since this image is in a lat-lon projection and giving that we are not on the equator, there is an horizontal strech in term of distance measurements. The mean latitude of the domain is 28.5307236deg, so the horizontal stretching is approximately 1/cos(lat)=1.13822
Ligne 108 modifiée:
The later image may be resampled on a 300x150 grid which give a constant ground resolution on both axis of 1 km (the domain was choosen to cover 300x150 km). Images below show the resultant images for 1km resolution and 2 km resolution respectively.
en:
The later image may be resampled on a 400x300 grid which give a constant ground resolution on both axis of 1 km (the domain was choosen to cover 400x300 km). In fact that domaine insure a buffer region of at least 120km between an observatory and its nearest domaine limit. Giving that the model height is 30 km, this means that we can model zenith angles up to 76 deg. In fact our lowest angle measurements have been done at 75 deg from zenith. Images below show the resultant images for 1km resolution and 2 km resolution respectively.
Lignes 84-88 ajoutées:

The domain was choosen to include the main light sources which may have a significant effect on ORM and OT sites. We roughly estimated that considering Gran Canaria island is required at least for the modeling of the OT site. That island is somewhat far bot have an important lighting infrastructure.

We will try two resolution to evaluate the real advantage of working at the OLS nominal resolution (~1km). Modeling at a 2km resolution reduce the computation time by a factor of 4.

Ligne 103 modifiée:
En rééchantillonnant sur 1km et 2km, nous obtenons les domaines suivants:
en:
The later image may be resampled on a 300x150 grid which give a constant ground resolution on both axis of 1 km (the domain was choosen to cover 300x150 km). Images below show the resultant images for 1km resolution and 2 km resolution respectively.
Lignes 96-97 modifiées:
*Image ols extraite avec les coordonnées ci-haut [[Attach:F152003_v2_stable_lights_avg_vis.tif]]
*Preview normalisé
en:
*OLS image extracted with coordinates show above [[Attach:F152003_v2_stable_lights_avg_vis.tif]]
*Normalized preview
Ligne 99 modifiée:
Cette image est déformée en terme de metre puisque la projection est lat-lon et nous ne sommes pas à l'équateur. La latitude moyenne étant de 28.2088888deg, l'étirement horizontal est donc de 1/cos(lat)=1.13477735
en:
Since this image is in a lat-lon projection and giving that we are not on the equator, there is an horizontal strech in term of distance measurements. The mean latitude of the domain is 28.2088888deg, so the horizontal stretching is approximately 1/cos(lat)=1.13477735
Lignes 101-102 modifiées:
Avec un rayon moyen terrestre de 6371km, chaque pixel mesure donc environ 6371*(30/3600)*(pi/180)=927 m
en:
Giving a mean earth radius of 6371km, each pixel mesure approximately 6371*(30/3600)*(pi/180)=927 m on the Noth-South axis.
Lignes 104-105 modifiées:
Attach:F152003_v2_stable_lights_avg_vis_eqdist-1km.jpg Attach: F152003_v2_stable_lights_avg_vis_eqdist-1km-col.jpg Attach:F152003_v2_stable_lights_avg_vis_eqdist-2km.jpg
en:
Attach:F152003_v2_stable_lights_avg_vis_eqdist-1km.jpg Attach:F152003_v2_stable_lights_avg_vis_eqdist-1km-col.jpg Attach:F152003_v2_stable_lights_avg_vis_eqdist-2km.jpg
Lignes 104-105 modifiées:
Attach:F152003_v2_stable_lights_avg_vis_eqdist-1km.jpg Attach:F152003_v2_stable_lights_avg_vis_eqdist-2km.jpg
en:
Attach:F152003_v2_stable_lights_avg_vis_eqdist-1km.jpg Attach: F152003_v2_stable_lights_avg_vis_eqdist-1km-col.jpg Attach:F152003_v2_stable_lights_avg_vis_eqdist-2km.jpg
Lignes 103-105 modifiées:
en:
En rééchantillonnant sur 1km et 2km, nous obtenons les domaines suivants:
Attach:F152003_v2_stable_lights_avg_vis_eqdist-1km.jpg Attach:F152003_v2_stable_lights_avg_vis_eqdist-2km.jpg

Lignes 101-103 modifiées:
Avec un rayon moyen terrestre de 6371km, chaque pixel mesure donc environ 6371*(30/3600)*(pi/180)
en:
Avec un rayon moyen terrestre de 6371km, chaque pixel mesure donc environ 6371*(30/3600)*(pi/180)=927 m

Ligne 101 modifiée:
en:
Avec un rayon moyen terrestre de 6371km, chaque pixel mesure donc environ 6371*(30/3600)*(pi/180)
Lignes 100-101 modifiées:
en:
Attach:F152003_v2_stable_lights_avg_vis_eqdist.jpg
Lignes 99-100 modifiées:
Cette image est déformée en terme de metre puisque la projection est lat-lon et nous ne sommes pas à l'équateur. La latitude moyenne étant
en:
Cette image est déformée en terme de metre puisque la projection est lat-lon et nous ne sommes pas à l'équateur. La latitude moyenne étant de 28.2088888deg, l'étirement horizontal est donc de 1/cos(lat)=1.13477735
Lignes 99-100 modifiées:
en:
Cette image est déformée en terme de metre puisque la projection est lat-lon et nous ne sommes pas à l'équateur. La latitude moyenne étant
Lignes 97-99 modifiées:
en:
*Preview normalisé
Attach:F152003_v2_stable_lights_avg_vis.jpg

Lignes 96-97 modifiées:
*Image ols 26-30 N - 12-19 O [[Attach:F152003_v2_stable_lights_avg_vis.tif]]
en:
*Image ols extraite avec les coordonnées ci-haut [[Attach:F152003_v2_stable_lights_avg_vis.tif]]
Lignes 86-89 modifiées:
*NW corner= 28°53'0'' N , 18° 13' O'' 
*NE corner= 28°53'0'' N , 15° 8' 7''
*SW corner= 27°32'4'' N , 18° 13' O''
*SE corner= 27°32'4'' N , 15° 8' 7''
en:
*NW corner= 28°53'0'' N , 18° 13' O''  (28.8833333,-18.2166666)
*NE
corner= 28°53'0'' N , 15° 8' 7''    (28.8833333,-15.1352777)
*SW corner= 27°32
'4'' N , 18° 13' O''   (27.5344444,-18.2166666)
*SE corner= 27°32
'4'' N , 15° 8' 7''    (27.5344444,-15.1352777)
Ligne 176 modifiée:
(:cell align='center':)Indalux IQV
en:
(:cell align='center':)Indalux Villa
Lignes 178-180 modifiées:
(:cell align='center':)[[Attach:3061604s-35SOX-flatglass.ies|3061604s-35SOX-flatglass.ies]]
(:cell align='center':)[[Attach:indalux_iqv_fctem_01.dat|indalux_iqv_fctem_01.dat]]
(:cell align='center':)Img:portadaiqv_3061604s.jpg
en:
(:cell align='center':)[[Attach:3008554CANARIAS.ies|3008554CANARIAS.ies]]
(:cell align='center':)[[Attach:Indalux-Villa_fctem_01.dat|Indalux-Villa_fctem_01.dat]]
(:cell align='center':)Img:Indalux-Villa.jpg
Ligne 153 modifiée:
(:cellnr:)Tenerife E
en:
(:cellnr:)Tenerife E & other islands
Lignes 158-163 supprimées:
(:cellnr:)Other islands
(:cell align='center':)9%
(:cell:)15%
(:cell:)35%
(:cell:)20%
(:cell:)79%
Ligne 124 modifiée:
(:cellnr:)Tenerife E
en:
(:cellnr:)Tenerife E & other islands
Lignes 129-134 supprimées:
(:cellnr:)Other islands
(:cell:)10%
(:cell:)15%
(:cell:)45%
(:cell:)30%
(:cell:)100%
Ligne 189 modifiée:
(:cell align='center':)0.9%
en:
(:cell align='center':)1.1%
Ligne 201 modifiée:
(:cell align='center':)0%
en:
(:cell align='center':)0.2%
Lignes 167-170 modifiées:
(:cell:)14%
(:cell:)42%
(:cell:)28%
(:cell:)91%
en:
(:cell:)15%
(:cell:)35%
(:cell:)20%
(:cell:)79%
Ligne 148 supprimée:
(:cell:)5%
Lignes 150-151 modifiées:
(:cell:)35%
(:cell:)48%
en:
(:cell:)2%
(:cell:)40%
(:cell:)50
%
Lignes 154-156 modifiées:
(:cell align='center':)1%
(:cell:)48%
(:cell:)3
%
en:
(:cell align='center':)3%
(:cell:)10%
Lignes 157-158 modifiées:
(:cell:)60%
en:
(:cell:)40%
(:cell:)62
%
Lignes 161-162 modifiées:
(:cell:)14%
(:cell:)18%
en:
(:cell:)10%
(:cell:)10%
Ligne 164 modifiée:
(:cell:)91%
en:
(:cell:)79%
Ligne 113 supprimée:
(:cell:)10%
Lignes 115-116 modifiées:
(:cell:)70%
en:
(:cell:)5%
(:cell:)75
%
Lignes 118-119 supprimées:
(:cell:)1%
(:cell:)80%
Lignes 119-122 supprimées:
(:cell:)14%
(:cell:)100%
(:cellnr:)Tenerife E
(:cell:)10%
Lignes 120-123 supprimées:
(:cell:)20%
(:cell:)55%
(:cell:)100%
(:cellnr:)Other islands
Lignes 122-125 ajoutées:
(:cell:)70%
(:cell:)100%
(:cellnr:)Tenerife E
(:cell:)10%
Lignes 127-128 modifiées:
(:cell:)45%
(:cell:)30%
en:
(:cell:)15%
(:cell:)60%
Lignes 130-135 ajoutées:
(:cellnr:)Other islands
(:cell:)10%
(:cell:)15%
(:cell:)45%
(:cell:)30%
(:cell:)100%
Lignes 165-170 modifiées:
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
en:
(:cellnr:)Other islands
(:cell align='center':)9%
(:cell:)14%
(:cell:)42%
(:cell:)28%
(:cell:)91%
Lignes 165-170 ajoutées:
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Lignes 130-135 modifiées:
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
en:
(:cellnr:)Other islands
(:cell:)10%
(:cell:)15%
(:cell:)45%
(:cell:)30%
(:cell:)100%
Lignes 130-135 ajoutées:
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Lignes 199-200 modifiées:
en:
*Numerical terrain model
Ligne 169 modifiée:
(:cellnr:)Commercial adv.
en:
(:cellnr:)Commercial
Ligne 175 modifiée:
(:cellnr:)Street light 1
en:
(:cellnr:)Street 1
Ligne 181 modifiée:
(:cellnr:)Street light 6
en:
(:cellnr:)Street 6
Ligne 187 modifiée:
(:cellnr:)Street light 0
en:
(:cellnr:)Street 0
Lignes 136-139 modifiées:
(:cell align='center':)Commercial adv. (50%UP)
(:cell:)Public street 1 (1%UP)
(:cell:)Public street 6 (6%UP)
(:cell:)Flat glass (0%UP)
en:
(:cell align='center':)Commercial (50%UP)
(:cell:)Street 1 (1%UP)
(:cell:)Street 6 (6%UP)
(:cell:)Street 0 (0%UP)
Lignes 107-110 modifiées:
(:cell:)Commercial adv. (50%UP)
(:cell:)Public street 1(1%UP)
(:cell:)Public street 6 (6%UP)
(:cell:)Flat glass (0%UP)
en:
(:cell:)Commercial (50%UP)
(:cell:)Street 1(1%UP)
(:cell:)Street 6 (6%UP)
(:cell:)Street 0 (0%UP)
Lignes 202-204 modifiées:


en:
----

!utilisation des ETC CRAQ

Dégagement offert est de 0,58 ETC confirmé par le FQRNT pour 3 ans débutant avec la session Automne 2008.
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. L'utilisation de ce dégagement est consigné ici:

http://spreadsheets.google.com/ccc?key=0AuiEg1ToyTykcDhReUtPRUNEQk1NX1RVa29JMlRZQXc&hl=fr


*Proposition d'un projet sur 3 mois TC mais réparti sur 6 mois à demi temps.




Lignes 45-55 modifiées:
!utilisation des ETC CRAQ

Dégagement offert est de 0,58 ETC confirmé par le FQRNT pour 3 ans débutant avec la session Automne 2008.
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. L'utilisation de ce dégagement est consigné ici:

http://spreadsheets.google.com/ccc?key=0AuiEg1ToyTykcDhReUtPRUNEQk1NX1RVa29JMlRZQXc&hl=fr


*Proposition d'un projet sur 3 mois TC mais réparti sur 6 mois à demi temps.

en:
Lignes 13-14 modifiées:
!Résumé du projet
en:
!The Project
Lignes 13-14 modifiées:
!!Résumé du projet
en:
!Résumé du projet
Lignes 28-29 modifiées:
!!!Title
en:
!!Title
Lignes 31-32 modifiées:
!!!Summary
en:
!!Summary
Lignes 35-36 modifiées:
!!!Methodology
en:
!!Methodology
Lignes 44-45 modifiées:
!!utilisation des ETC CRAQ
en:

!utilisation des ETC CRAQ
Lignes 56-57 modifiées:
!!Références sur la pollution lumineuse à La Palma et Tenerife
en:
!La Palma and Tenerife Light pollution references
Lignes 69-86 modifiées:
!!Manuels
*[[Attach:sunman.pdf|Manuel d'utilisation du Microtops II]]
!!Input data

*Reflectances modis dans les bandes 1-7 global 250m
[[http://modis-sr.ltdri.org/MAIN_PUBLICATIONS/Papers/atbd_mod09.pdf|Article]]
**Vermote, E. F., & Vermeulen, A. (1999). Atmospheric correction algorithm:  Spectral reflectances (MOD09), ATBD version 4.0.
!![[DevisTenerife2009|Devis de projet]]

!![[Demanderqchp-tenerife|Demande de temps à Calcul Canada]]
!![[SemainesTenerife2009|Calendrier des activités par semaine]]

!![[ListeMaterielTenerife2010|Liste du matériel]]

!!Campagnes de mesures
*[[ZonesEchantillonsTenerife2010|Points d'échantillonnages]]
*[[ProcedureObsTeide|Procédure d'observation au Teide]]
!!Services web de l'IAC

en:
!Manuals
*[[Attach:sunman.pdf|Using manual for the portable sunphotometer Microtops II]]


![[DevisTenerife2009|Projet proposal]]

![[Demanderqchp-tenerife|Ressource allocation to compute Canada]]

![[SemainesTenerife2009|Weekly time table]]

!
[[ListeMaterielTenerife2010|List of equipment]]

!Field campaign
*[[ZonesEchantillonsTenerife2010|Sampling points]]
*[[ProcedureObsTeide|Observing procedure]]

!IAC web service

Lignes 89-92 modifiées:
!!Modélisation

!
!!Modeling domain
en:

!Modeling experiment

!!Modeling domain
Ligne 102 modifiée:
!!!Ground luminosity data
en:
!!Ground luminosity data
Lignes 109-113 modifiées:

!!!!résumé de la
discussion avec Javier Diaz-Castro

Il y a grosso modo deux périodes et 3 zones distinctes
en:
A summary from private discussion with Javier Diaz-Castro


There is basically 2 distinct periods and
3 different zones which are summarize in tables below
Lignes 205-209 modifiées:
!![[LiensTenerife2010|Liens]]



en:
!!Other input data

*Modis reflectance from band 1-7 global 250m [[http://modis-sr.ltdri.org/MAIN_PUBLICATIONS/Papers/atbd_mod09.pdf|Article]]
**Vermote, E. F., & Vermeulen, A. (1999). Atmospheric correction algorithm:  Spectral reflectances (MOD09), ATBD version 4.0.

![[LiensTenerife2010|Liens]]



Lignes 90-99 modifiées:
!!!Domaine de modélisation

*Largeur du domaine=300km
*Hauteur du domaine=150km
*Coin NO=
28°53'0'' N , 18° 13' O'' 
*Coin NE= 28°53'0'' N , 15° 8' 7''
*Coin SO= 27°32'4'' N , 18° 13' O''
*Coin SE= 27°32'4'' N , 15° 8' 7''
*Résolution=1km, 2km
en:
!!!Modeling domain

*Domain width=300km
*Domain height=150km
*NW corner= 28°53'0'' N , 18° 13' O'' 
*NE corner= 28°53'0'' N , 15° 8' 7''
*SW corner= 27°32'4'' N , 18° 13' O''
*SE corner= 27°32'4'' N , 15° 8' 7''
*Resolutions=1km, 2km
Lignes 100-102 modifiées:
!!!Données de luminosité au sol
*Résolution de 30 sec arc
(~1km)
*Choisir les «stable light» pour éliminer les feux de forêts
en:
!!!Ground luminosity data
*Resolution of 30 sec arc
(~1km)
*Choose «stable light» to eliminate contamination from forest fire
Ligne 169 modifiée:
!!!Tableau des lampes
en:
!!!Generic lamps table
Ligne 141 modifiée:
!!!!After midnight
en:
!!!!Contribution to total flux after midnight
Ligne 112 modifiée:
!!!!Before midnight
en:
!!!!Contribution to total flux before midnight
Ligne 181 modifiée:
(:cell align='center':)Attach:iso_fctem_01.dat
en:
(:cell align='center':)[[Attach:iso_fctem_01.dat|iso_fctem_01.dat]]
Lignes 186-187 modifiées:
(:cell align='center':)Attach:3061604s-35SOX-flatglass.ies
(:cell align='center':)Attach:indalux_iqv_fctem_01.dat
en:
(:cell align='center':)[[Attach:3061604s-35SOX-flatglass.ies|3061604s-35SOX-flatglass.ies]]
(:cell align='center':)[[Attach:indalux_iqv_fctem_01.dat|indalux_iqv_fctem_01.dat]]
Lignes 192-193 modifiées:
(:cell align='center':)Attach:RY15H3AL.ies
(:cell align='center':)Attach:cobrahead_fctem_01.dat
en:
(:cell align='center':)[[Attach:RY15H3AL.ies|RY15H3AL.ies]]
(:cell align='center':)[[Attach:cobrahead_fctem_01.dat|cobrahead_fctem_01.dat]]
Lignes 198-199 modifiées:
(:cell align='center':)Attach:9V148_70WHPS-curvedglass-EURO2.IES
(:cell align='center':)Attach:euro2_fctem_01.dat
en:
(:cell align='center':)[[Attach:9V148_70WHPS-curvedglass-EURO2.IES|9V148_70WHPS-curvedglass-EURO2.IES]]
(:cell align='center':)[[Attach:euro2_fctem_01.dat|euro2_fctem_01.dat]]
Ligne 173 modifiée:
(:cell:)
en:
(:cell align='center':)UpLight
Ligne 179 modifiée:
(:cell:)
en:
(:cell align='center':)50%
Ligne 185 modifiée:
(:cell:)
en:
(:cell align='center':)0.9%
Ligne 187 modifiée:
(:cell align='center':)
en:
(:cell align='center':)Attach:indalux_iqv_fctem_01.dat
Ligne 191 modifiée:
(:cell:)
en:
(:cell align='center':)6.3%
Ligne 193 modifiée:
(:cell align='center':)
en:
(:cell align='center':)Attach:cobrahead_fctem_01.dat
Ligne 197 modifiée:
(:cell:)
en:
(:cell align='center':)0%
Ligne 199 modifiée:
(:cell align='center':)
en:
(:cell align='center':)Attach:euro2_fctem_01.dat
Ligne 173 ajoutée:
(:cell:)
Ligne 179 ajoutée:
(:cell:)
Ligne 185 ajoutée:
(:cell:)
Ligne 191 ajoutée:
(:cell:)
Ligne 197 ajoutée:
(:cell:)
Ligne 185 modifiée:
(:cell align='center':)Attach:portadaiqv_3061604s.jpg
en:
(:cell align='center':)Img:portadaiqv_3061604s.jpg
Ligne 190 modifiée:
(:cell align='center':)Attach:cobrahead_RY_15x_Cooper.jpg
en:
(:cell align='center':)Img:cobrahead_RY_15x_Cooper.jpg
Ligne 195 modifiée:
(:cell align='center':)Attach:euro2-curvedglass_GE.jpg
en:
(:cell align='center':)Img:euro2-curvedglass_GE.jpg
Lignes 172-175 modifiées:
(:cell:)Model
(:cell:)IES file
(
:cell:)Illumina file
(:cell:)Image
en:
(:cell align='center':)Model
(:cell align='center':)IES file
(:cell align='center':)Illumina file
(:cell align='center'
:)Image
Lignes 177-180 modifiées:
(:cell:)-
(:cell:)-
(:cell:)Attach:iso_fctem_01.dat
(:cell:)-
en:
(:cell align='center':)-
(:cell align='center':)-
(:cell align='center':)Attach:iso_fctem_01.dat
(:cell align='center':)-
Lignes 182-185 modifiées:
(:cell:)Indalux IQV
(
:cell:)Attach:3061604s-35SOX-flatglass.ies
(:
cell:)
(
:cell:)Attach:portadaiqv_3061604s.jpg
en:
(:cell align='center':)Indalux IQV
(
:cell align='center':)Attach:3061604s-35SOX-flatglass.ies
(:
cell align='center':)
(:cell align='center'
:)Attach:portadaiqv_3061604s.jpg
Lignes 187-190 modifiées:
(:cell:)COOPER cobrahead
(
:cell:)Attach:RY15H3AL.ies
(:
cell:)
(
:cell:)Attach:cobrahead_RY_15x_Cooper.jpg
en:
(:cell align='center':)COOPER cobrahead
(
:cell align='center':)Attach:RY15H3AL.ies
(:
cell align='center':)
(:cell align='center'
:)Attach:cobrahead_RY_15x_Cooper.jpg
Lignes 192-195 modifiées:
(:cell:)GE Euro-2
(:cell:)Attach:9V148_70WHPS-curvedglass-EURO2.IES
(:cell:)
(:cell:)Attach:euro2-curvedglass_GE.jpg
en:
(:cell align='center':)GE Euro-2
(:cell align='center':)Attach:9V148_70WHPS-curvedglass-EURO2.IES
(:cell align='center':)
(:cell align='center':)Attach:euro2-curvedglass_GE.jpg
Ligne 182 modifiée:
(:cell:)Indalux IQV Fefl-1
en:
(:cell:)Indalux IQV
Ligne 185 modifiée:
(:cell:)
en:
(:cell:)Attach:portadaiqv_3061604s.jpg
Ligne 190 modifiée:
(:cell:)
en:
(:cell:)Attach:cobrahead_RY_15x_Cooper.jpg
Ligne 195 modifiée:
(:cell:)
en:
(:cell:)Attach:euro2-curvedglass_GE.jpg
Lignes 182-183 ajoutées:
(:cell:)Indalux IQV Fefl-1
(:cell:)Attach:3061604s-35SOX-flatglass.ies
Ligne 184 supprimée:
(:cell:)Attach:3061604s-35SOX-flatglass.ies
Ligne 185 supprimée:
(:cell:)
Lignes 187-188 ajoutées:
(:cell:)COOPER cobrahead
(:cell:)Attach:RY15H3AL.ies
Ligne 189 supprimée:
(:cell:)Attach:RY15H3AL.ies
Ligne 190 supprimée:
(:cell:)
Lignes 192-193 ajoutées:
(:cell:)GE Euro-2
(:cell:)Attach:9V148_70WHPS-curvedglass-EURO2.IES
Ligne 194 supprimée:
(:cell:)Attach:9V148_70WHPS-curvedglass-EURO2.IES
Ligne 195 supprimée:
(:cell:)
Ligne 183 ajoutée:
(:cell:)Attach:3061604s-35SOX-flatglass.ies
Ligne 186 ajoutée:
(:cellnr:)Street light 6
Lignes 187-188 supprimées:
(:cellnr:)Street light 6
(:cell:)
Ligne 191 modifiée:
(:cellnr:)Flat glass
en:
(:cellnr:)Street light 0
Ligne 193 ajoutée:
(:cell:)Attach:9V148_70WHPS-curvedglass-EURO2.IES
Ligne 195 supprimée:
(:cell:)
Ligne 188 ajoutée:
(:cell:)Attach:RY15H3AL.ies
Ligne 191 ajoutée:
(:cellnr:)Flat glass
Ligne 192 supprimée:
(:cellnr:)Flat glass
Ligne 195 supprimée:
(:cell:)
Ligne 191 modifiée:
(:cellnr:)
en:
(:cellnr:)Flat glass
Ligne 186 modifiée:
(:cellnr:)
en:
(:cellnr:)Street light 6
Lignes 191-195 ajoutées:
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Ligne 181 modifiée:
(:cellnr:)
en:
(:cellnr:)Street light 1
Lignes 186-190 ajoutées:
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Lignes 175-181 ajoutées:
(:cell:)Image
(:cellnr:)Commercial adv.
(:cell:)-
(:cell:)-
(:cell:)Attach:iso_fctem_01.dat
(:cell:)-
(:cellnr:)
Ligne 182 supprimée:
(:cellnr:)
Ligne 185 supprimée:
(:cell:)
Ligne 174 ajoutée:
(:cell:)Illumina file
Ligne 180 ajoutée:
(:cell:)
Lignes 170-174 modifiées:
(:table border=1 width=80%:)
en:
(:table border='1' width='80%':)
(:cellnr:)Generic name
(:cell:)Model
(:cell:)IES file
(:cell
:)
Ligne 177 supprimée:
(:cellnr:)
Ligne 178 supprimée:
(:cell:)
Ligne 170 modifiée:
(:table now border=1 width=80%:)
en:
(:table border=1 width=80%:)
Lignes 169-178 ajoutées:
!!!Tableau des lampes
(:table now border=1 width=80%:)
(:cellnr:)
(:cell:)
(:cell:)
(:cellnr:)
(:cell:)
(:cell:)
(:tableend:)

Lignes 115-117 modifiées:
(:cell:)Affichage commercial (50%UP)
(:cell:)Public street (1%UP)
(:cell:)Public street (6%UP)
en:
(:cell:)Commercial adv. (50%UP)
(:cell:)Public street 1(1%UP)
(:cell:)Public street 6 (6%UP)
Lignes 144-146 modifiées:
(:cell:)Affichage commercial (50%UP)
(:cell:)Public street (1%UP)
(:cell:)Public street (6%UP)
en:
(:cell align='center':)Commercial adv. (50%UP)
(:cell:)Public street 1 (1%UP)
(:cell:)Public street 6 (6%UP)
Ligne 150 modifiée:
(:cell:)0%
en:
(:cell align='center':)0%
Ligne 156 modifiée:
(:cell:)1%
en:
(:cell align='center':)1%
Ligne 162 modifiée:
(:cell:)9%
en:
(:cell align='center':)9%
Ligne 141 modifiée:
!!!!Après minuit
en:
!!!!After midnight
Ligne 112 modifiée:
!!!!Avant minuit
en:
!!!!Before midnight
Ligne 148 modifiée:
(:cell:)Total
en:
(:cell:)Total of satellite
Ligne 119 modifiée:
(:cell:)
en:
(:cell:)Total of Satellite
Ligne 125 modifiée:
(:cell:)
en:
(:cell:)100%
Ligne 131 modifiée:
(:cell:)
en:
(:cell:)100%
Ligne 137 modifiée:
(:cell:)
en:
(:cell:)100%
Ligne 119 ajoutée:
(:cell:)
Ligne 125 ajoutée:
(:cell:)
Ligne 131 ajoutée:
(:cell:)
Ligne 137 ajoutée:
(:cell:)
Ligne 144 modifiée:
(:cell:)
en:
(:cell:)Total
Ligne 150 modifiée:
(:cell:)
en:
(:cell:)48%
Lignes 153-154 modifiées:
(:cell:)80%
(:cell:)5%
en:
(:cell:)48%
(:cell:)3%
(:cell:)8%
(:cell:)60%
(:cellnr:)Tenerife E
(:cell:)9
%
Lignes 160-166 modifiées:
(:cell:)
(:cellnr:)Tenerife E
(:cell:)10%
(:cell:)15%
(:cell:)20%
(:cell:)55%
(:cell:)
en:
(:cell:)18%
(:cell:)50%
(:cell:)91%
Ligne 144 ajoutée:
(:cell:)
Ligne 146 ajoutée:
(:cell:)0%
Lignes 148-150 modifiées:
(:cell:)10%
(:cell:)15%
(:cell:)70%
en:
(:cell:)8%
(:cell:)35%
(:cell:)
Ligne 156 ajoutée:
(:cell:)
Ligne 162 ajoutée:
(:cell:)
Lignes 137-160 ajoutées:
!!!!Après minuit
(:table border='1' width='80%':)
(:cellnr:)Zone
(:cell:)Affichage commercial (50%UP)
(:cell:)Public street (1%UP)
(:cell:)Public street (6%UP)
(:cell:)Flat glass (0%UP)
(:cellnr:)La Palma
(:cell:)5%
(:cell:)10%
(:cell:)15%
(:cell:)70%
(:cellnr:)Tenerife W
(:cell:)1%
(:cell:)80%
(:cell:)5%
(:cell:)14%
(:cellnr:)Tenerife E
(:cell:)10%
(:cell:)15%
(:cell:)20%
(:cell:)55%
(:tableend:)

Lignes 129-133 modifiées:
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
en:
(:cellnr:)Tenerife E
(:cell:)10%
(:cell:)15%
(:cell:)20%
(:cell:)55%
Lignes 129-133 ajoutées:
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Lignes 124-128 modifiées:
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
en:
(:cellnr:)Tenerife W
(:cell:)1%
(:cell:)80%
(:cell:)5%
(:cell:)14%
Ligne 112 modifiée:
!!!!!Avant minuit
en:
!!!!Avant minuit
Ligne 112 ajoutée:
!!!!!Avant minuit
Ligne 117 modifiée:
(:cell:)
en:
(:cell:)Flat glass (0%UP)
Lignes 119-123 ajoutées:
(:cell:)5%
(:cell:)10%
(:cell:)15%
(:cell:)70%
(:cellnr:)
Lignes 113-116 modifiées:
(:cellnr:)Avant minuit
en:
(:cellnr:)Zone
(:cell:)Affichage commercial (50%UP)
(:cell:)Public street (1%UP)
(:cell:)Public street (6%UP)
Ligne 118 ajoutée:
(:cellnr:)La Palma
Lignes 119-120 supprimées:
(:cell:)Après minuit
(:cellnr:)La Palma
Ligne 117 ajoutée:
(:cellnr:)La Palma
Ligne 118 supprimée:
(:cellnr:)La Palma
Lignes 120-121 supprimées:
(:cell:)
(:cell:)
Ligne 113 modifiée:
(:cellnr:)
en:
(:cellnr:)Avant minuit
Ligne 116 ajoutée:
(:cell:)Après minuit
Ligne 118 ajoutée:
(:cellnr:)La Palma
Ligne 120 supprimée:
(:cellnr:)
Lignes 122-124 supprimées:
(:cell:)
(:cell:)
(:cell:)
Ligne 118 ajoutée:
(:cell:)
Ligne 124 ajoutée:
(:cell:)
Ligne 117 ajoutée:
(:cell:)
Ligne 122 ajoutée:
(:cell:)
Ligne 112 modifiée:
(:table border=1 width=80%:)
en:
(:table border='1' width='80%':)
Ligne 116 ajoutée:
(:cell:)
Ligne 120 ajoutée:
(:cell:)
Ligne 112 modifiée:
(:table now border=1 width=80%:)
en:
(:table border=1 width=80%:)
Lignes 88-121 modifiées:
!![[DomaineModelTenerife2010|Domaine de modélisation]]
en:
!!Modélisation

!!!Domaine de modélisation

*Largeur du domaine=300km
*Hauteur du domaine=150km
*Coin NO= 28°53'0'' N , 18° 13' O'' 
*Coin NE= 28°53'0'' N , 15° 8' 7''
*Coin SO= 27°32'4'' N , 18° 13' O''
*Coin SE= 27°32'4'' N , 15° 8' 7''
*Résolution=1km, 2km

!!!Données de luminosité au sol
*Résolution de 30 sec arc (~1km)
*Choisir les «stable light» pour éliminer les feux de forêts
*OLS download http://www.ngdc.noaa.gov/eog/maps/cgi-bin/public/ms/gcv2/dl
*Image ols 26-30 N - 12-19 O [[Attach:F152003_v2_stable_lights_avg_vis.tif]]

!!!Inventaire

!!!!résumé de la discussion avec Javier Diaz-Castro

Il y a grosso modo deux périodes et 3 zones distinctes

(:table now border=1 width=80%:)
(:cellnr:)
(:cell:)
(:cell:)
(:cellnr:)
(:cell:)
(:cell:)
(:tableend:)

Lignes 90-96 modifiées:
!![[JournalTenerife2010|Journal du voyage]]
----




en:



Lignes 37-40 modifiées:
%justify%As a first step, a measurement campaign will be made across Tenerife and La Palma islands in order to get a relatively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition over at least 20 sampling sites. Sites will be chosen in order to sample uniformly both islands and will fit with island modeling zones. Modeling zones may be defined for example as a central zone around the observatory and as 45 degrees radial subdivision of the remaining surface. For each of these sampling sites, measurement should be made toward zenith and forward/backward along observer to main nearby cities line of sight at 15 deg. above horizon. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument, which will be used to accomplish observations, is the third version of the Spectrometer for Aerosol Night Detection (SAND-3). SAND-3 have been designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at the Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in Université de Sherbrooke, Canada. SAND have been used successfully for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, Kitt Peak National Observatory (KPNO), Fred Lawrence Whipple Observatory (FLWO), US Naval Observatory (USNO), Lowell and Mégantic). The field campaign proposed here may require more or less 2 month depending on clear sky conditions.

%justify%The second step of
the project will be to acquire input database required to run our model called ILLUMINA (Aubé et al. 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (like Kocifaj 2007). First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements mulitangular dependence and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also used empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in its capability to simulate any heterogeneous distribution of a variety of light fixture with their own intensities, spectral dependences, and angular light output pattern. The model may also account for shadowing effects associated with topography, for gridded variation in ground reflectance and subgrid obstacles (trees, buildings, etc.). Explicit 1st and 2nd order scattering and extinction from aerosols and molecules and the vertical profile of atmospheric constituants is taken into account. ILLUMINA also compute optical impact of size distribution and composition of aerosol content which may be quite useful during pollution events like important biomass burning or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), and ground spectral reflectance. Model also requires typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensities may be either obtained from local inventories or estimated from population density data and in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed data of the MODerate-resolution Imaging Spectroradiometer (MODIS) (Vermote and Vermeulen 1999). Atmospheric pressure data will be taken from local meteorological station and aerosol optical properties from active NASA-AERONET sunphotometers (Holben et al. 2001) located on Tenerife island.
en:
%justify%As a first step, a measurement campaign will be made across Tenerife and La Palma islands in order to get a relatively good angular sampling of the spectral sky brightness levels. This field campaign should involve the acquisition over at least 4 sampling sites (2 observatories and 2 near see level sites). For observatories sites, measurement should be made all over the sky at 15 deg., 30 deg. 60 deg. and 90 deg. above horizon. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument, which will be used to accomplish observations, is the third version of the Spectrometer for Aerosol Night Detection (SAND-3). SAND-3 have been designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. SAND have been used successfully for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, Kitt Peak National Observatory (KPNO), Fred Lawrence Whipple Observatory (FLWO), US Naval Observatory (USNO), Lowell and Mégantic). The field campaign proposed here may require more or less 2 month depending on clear sky conditions.

%justify%The second step of the project will be to acquire input database required to run our model called ILLUMINA (Aubé et al. 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model
(like Kocifaj 2007). First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements mulitangular dependence and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also used empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in its capability to simulate any heterogeneous distribution of a variety of light fixture with their own intensities, spectral dependences, and angular light output pattern. The model may also account for shadowing effects associated with topography, for gridded variation in ground reflectance and subgrid obstacles (trees, buildings, etc.). Explicit 1st and 2nd order scattering and extinction from aerosols and molecules and the vertical profile of atmospheric constituants is taken into account. ILLUMINA also compute optical impact of size distribution and composition of aerosol content which may be quite useful during pollution events like important biomass burning or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), and ground spectral reflectance. Model also requires typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensities will be eobtained from a combination of local inventories, sattelite (DMSP-OLS) data and in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed data of the MODerate-resolution Imaging Spectroradiometer (MODIS) (Vermote and Vermeulen 1999). Atmospheric pressure data will be taken from local meteorological station and aerosol optical properties from active NASA-AERONET sunphotometers (Holben et al. 2001) located on Tenerife island.
Ligne 43 modifiée:
%justify%Finally we will perform about 40 model runs by "lighting on" alternatively only one sampling zone at a time. The goal of that experiment is to determine the contribution of each zone to the sky luminance at each observing site so that ones should be able to infer the impact of local change in lighting device inventory. That kind of results will be extremely useful to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).
en:
%justify%Finally we will perform about 40 model runs. The goal of that experiment is to determine the contribution of each ground point to the sky luminance at each observing site so that ones should be able to infer the impact of local change in lighting device inventory. That kind of results will be extremely useful to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).
Lignes 15-43 modifiées:
en:
%center%[++2010 IAC Invited Scientist project proposal++]%%
\\
\\
\\
\\

%center%Martin Aubé, Ph.D.%%


%center%CÉGEP de Sherbrooke, Canada%%

%center%Université de Sherbrooke, Canada%%

!!!Title

%justify%Assessing the contribution from different parts of Tenerife and La Palma islands to artificial spectral sky luminance levels over European Northern Observatories.
!!!Summary

%justify%We suggest to use a third generation sky luminance model which account for heterogeneous distribution of light fixtures, their photometry, the ground reflectance and topography along with hyperspectral sky luminance measurements to infer contribution of different zones of Tenerife and La Palma islands to astronomical observation sites sky luminances. This sensitive study will allow the identification and evaluation of critical island zones. The project aim to identify and characterize zones at which any lighting level increase or decrease may have a larger impact on light pollution at both European Northern Observatory sites, and then help to control and/or reduce their light pollution levels.

!!!Methodology

%justify%As a first step, a measurement campaign will be made across Tenerife and La Palma islands in order to get a relatively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition over at least 20 sampling sites. Sites will be chosen in order to sample uniformly both islands and will fit with island modeling zones. Modeling zones may be defined for example as a central zone around the observatory and as 45 degrees radial subdivision of the remaining surface. For each of these sampling sites, measurement should be made toward zenith and forward/backward along observer to main nearby cities line of sight at 15 deg. above horizon. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument, which will be used to accomplish observations, is the third version of the Spectrometer for Aerosol Night Detection (SAND-3). SAND-3 have been designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at the Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in Université de Sherbrooke, Canada. SAND have been used successfully for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, Kitt Peak National Observatory (KPNO), Fred Lawrence Whipple Observatory (FLWO), US Naval Observatory (USNO), Lowell and Mégantic). The field campaign proposed here may require more or less 2 month depending on clear sky conditions.

%justify%The second step of the project will be to acquire input database required to run our model called ILLUMINA (Aubé et al. 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (like Kocifaj 2007). First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements mulitangular dependence and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also used empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in its capability to simulate any heterogeneous distribution of a variety of light fixture with their own intensities, spectral dependences, and angular light output pattern. The model may also account for shadowing effects associated with topography, for gridded variation in ground reflectance and subgrid obstacles (trees, buildings, etc.). Explicit 1st and 2nd order scattering and extinction from aerosols and molecules and the vertical profile of atmospheric constituants is taken into account. ILLUMINA also compute optical impact of size distribution and composition of aerosol content which may be quite useful during pollution events like important biomass burning or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), and ground spectral reflectance. Model also requires typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensities may be either obtained from local inventories or estimated from population density data and in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed data of the MODerate-resolution Imaging Spectroradiometer (MODIS) (Vermote and Vermeulen 1999). Atmospheric pressure data will be taken from local meteorological station and aerosol optical properties from active NASA-AERONET sunphotometers (Holben et al. 2001) located on Tenerife island.

%justify%The third step will be to run the model for each observing night with the complete input dataset and compare model results with the first half of sky luminance measurements. As stated earlier this step aimed to calibrate the model in order to fit observations. Then the second half of measurements will be used to map typical model errors.

%justify%Finally we will perform about 40 model runs by "lighting on" alternatively only one sampling zone at a time. The goal of that experiment is to determine the contribution of each zone to the sky luminance at each observing site so that ones should be able to infer the impact of local change in lighting device inventory. That kind of results will be extremely useful to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).
Lignes 6-10 ajoutées:
(:toc:)


(:toc:)

Lignes 13-15 ajoutées:
!!Résumé du projet

Lignes 46-47 modifiées:
[[ZonesEchantillonsTenerife2010|Points d'échantillonnages]]
[[ProcedureObsTeide|Procédure d'observation au Teide]]
en:
*[[ZonesEchantillonsTenerife2010|Points d'échantillonnages]]
*[[ProcedureObsTeide|Procédure d'observation au Teide]]
Lignes 45-46 modifiées:
!![[ZonesEchantillonsTenerife2010|Campagnes de mesure]]
en:
!!Campagnes de mesures
[[ZonesEchantillonsTenerife2010|Points d'échantillonnages
]]
[[ProcedureObsTeide|Procédure d'observation au Teide]]
Lignes 45-46 modifiées:
!![[ZonesEchantillonsTenerife2010|Définition des zones d'échantillonage]]
en:
!![[ZonesEchantillonsTenerife2010|Campagnes de mesure]]
Lignes 18-95 modifiées:
!!Budget famille 6 mois
(:table border='1' width='80%':)
(:cellnr:)Tâche
(:cell:)Durée
(:cell:)Coût
(:cell:)Financement\\
FQRNT
(:cell:)Financement IAC
(:cell:)Economie durant le séjour
(:cellnr:)Transport international famille
(:cell:)-
(:cell:)7500
(:cell:)
(:cell:)1600
(:cell:)
(:cellnr:)Location minivan observations
(:cell:)30 jours
(:cell:)1500
(:cell:)1500
(:cell:)
(:cell:)
(:cellnr:)Hébergement observations
(:cell:)30 jours
(:cell:)4500
(:cell:)4500
(:cell:)
(:cell:)
(:cellnr:)Perdiemme
(:cell:)150 jours@73$
(:cell:)
(:cell:)11000
(:cell:)
(:cell:)
(:cellnr:)Hébergement et nourriture observatoires
(:cell:)4 jours
(:cell:)840
(:cell:)
(:cell:)840
(:cell:)
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1200
(:cell:)1200
(:cell:)
(:cell:)
(:cellnr:)Transport La Palma - Tenerife 2x
(:cell:)-
(:cell:)480
(:cell:)
(:cell:)480
(:cell:)
(:cellnr:)Hébergement famille
(:cell:)180 jours
(:cell:)9600
(:cell:)
(:cell:)9600
(:cell:)
(:cellnr:)revenu Location maison \\
St-Camille
(:cell:)180 jours
(:cell:)
(:cell:)
(:cell:)
(:cell:)4500
(:cellnr:)Fin de location MPV
(:cell:)180 jours
(:cell:)
(:cell:)
(:cell:)
(:cell:)2500
(:cellnr:)TOTAL
(:cell:)
(:cell:)~26000
(:cell:)~19000
(:cell:)~12500
(:cell:)~7000
(:tableend:)

en:
Lignes 124-127 ajoutées:
!!Services web de l'IAC

*[[https://webmail.iac.es|Courrier electronique via le web]]
*[[http://www.reserva-web.com/admot1/php/adm/comidas/validacion.php |Réservation repas Observatorio del Teide]]
Lignes 123-124 ajoutées:

!![[DomaineModelTenerife2010|Domaine de modélisation]]
Ligne 122 ajoutée:
!![[ZonesEchantillonsTenerife2010|Définition des zones d'échantillonage]]
Ligne 110 ajoutée:
*[[Attach:sunman.pdf|Manuel d'utilisation du Microtops II]]
Ligne 109 ajoutée:
!!Manuels
Lignes 3-5 ajoutées:

(:toc:)

Lignes 117-230 supprimées:
(:toc:)

!Sabbatique Tenerife 2010

!!utilisation des ETC CRAQ

Dégagement offert est de 0,58 ETC confirmé par le FQRNT pour 3 ans débutant avec la session Automne 2008.
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. L'utilisation de ce dégagement est consigné ici:

http://spreadsheets.google.com/ccc?key=0AuiEg1ToyTykcDhReUtPRUNEQk1NX1RVa29JMlRZQXc&hl=fr


*Proposition d'un projet sur 3 mois TC mais réparti sur 6 mois à demi temps.

!!Budget famille 6 mois
(:table border='1' width='80%':)
(:cellnr:)Tâche
(:cell:)Durée
(:cell:)Coût
(:cell:)Financement\\
FQRNT
(:cell:)Financement IAC
(:cell:)Economie durant le séjour
(:cellnr:)Transport international famille
(:cell:)-
(:cell:)7500
(:cell:)
(:cell:)1600
(:cell:)
(:cellnr:)Location minivan observations
(:cell:)30 jours
(:cell:)1500
(:cell:)1500
(:cell:)
(:cell:)
(:cellnr:)Hébergement observations
(:cell:)30 jours
(:cell:)4500
(:cell:)4500
(:cell:)
(:cell:)
(:cellnr:)Perdiemme
(:cell:)150 jours@73$
(:cell:)
(:cell:)11000
(:cell:)
(:cell:)
(:cellnr:)Hébergement et nourriture observatoires
(:cell:)4 jours
(:cell:)840
(:cell:)
(:cell:)840
(:cell:)
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1200
(:cell:)1200
(:cell:)
(:cell:)
(:cellnr:)Transport La Palma - Tenerife 2x
(:cell:)-
(:cell:)480
(:cell:)
(:cell:)480
(:cell:)
(:cellnr:)Hébergement famille
(:cell:)180 jours
(:cell:)9600
(:cell:)
(:cell:)9600
(:cell:)
(:cellnr:)revenu Location maison \\
St-Camille
(:cell:)180 jours
(:cell:)
(:cell:)
(:cell:)
(:cell:)4500
(:cellnr:)Fin de location MPV
(:cell:)180 jours
(:cell:)
(:cell:)
(:cell:)
(:cell:)2500
(:cellnr:)TOTAL
(:cell:)
(:cell:)~26000
(:cell:)~19000
(:cell:)~12500
(:cell:)~7000
(:tableend:)

!!Références sur la pollution lumineuse à La Palma et Tenerife

*http://www.ing.iac.es/Astronomy/observing/conditions/skybr/skybr.html#lpol
*http://www.ing.iac.es/PR/newsletter/news9/ins2.html
*http://www.iac.es/proyecto/otpc/pollu.htm
*http://www.starlight2007.net/pdf/proceedings/Pedani.pdf
*http://www.starlight2007.net/pdf/proceedings/F_delaPaz.pdf
*http://www.starlight2007.net/pdf/proceedings/Javier_DiazCastro.pdf
*http://www.iac.es/site-testing/
*http://www.iac.es/servicios.php?op1=28&op2=69&lang=en
*http://magic.mppmu.mpg.de/publications/articles/LONS.ps.gz
*http://www.iac.es/site-testing/index.php?option=com_content&task=view&id=51&Itemid=26

!!Input data

*Reflectances modis dans les bandes 1-7 global 250m [[http://modis-sr.ltdri.org/MAIN_PUBLICATIONS/Papers/atbd_mod09.pdf|Article]]
**Vermote, E. F., & Vermeulen, A. (1999). Atmospheric correction algorithm:  Spectral reflectances (MOD09), ATBD version 4.0.
!![[DevisTenerife2009|Devis de projet]]

!![[Demanderqchp-tenerife|Demande de temps à Calcul Canada]]
!![[SemainesTenerife2009|Calendrier des activités par semaine]]

Ligne 232 ajoutée:
!![[JournalTenerife2010|Journal du voyage]]
Ligne 238 ajoutée:
Lignes 236-240 modifiées:
!![[LeinsTenerife2010|Liens]]
----


en:
Ligne 231 modifiée:
!![[LeinsTenerife2010|Liens]]
en:
!![[LiensTenerife2010|Liens]]
Lignes 115-228 ajoutées:
(:toc:)

!Sabbatique Tenerife 2010

!!utilisation des ETC CRAQ

Dégagement offert est de 0,58 ETC confirmé par le FQRNT pour 3 ans débutant avec la session Automne 2008.
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. L'utilisation de ce dégagement est consigné ici:

http://spreadsheets.google.com/ccc?key=0AuiEg1ToyTykcDhReUtPRUNEQk1NX1RVa29JMlRZQXc&hl=fr


*Proposition d'un projet sur 3 mois TC mais réparti sur 6 mois à demi temps.

!!Budget famille 6 mois
(:table border='1' width='80%':)
(:cellnr:)Tâche
(:cell:)Durée
(:cell:)Coût
(:cell:)Financement\\
FQRNT
(:cell:)Financement IAC
(:cell:)Economie durant le séjour
(:cellnr:)Transport international famille
(:cell:)-
(:cell:)7500
(:cell:)
(:cell:)1600
(:cell:)
(:cellnr:)Location minivan observations
(:cell:)30 jours
(:cell:)1500
(:cell:)1500
(:cell:)
(:cell:)
(:cellnr:)Hébergement observations
(:cell:)30 jours
(:cell:)4500
(:cell:)4500
(:cell:)
(:cell:)
(:cellnr:)Perdiemme
(:cell:)150 jours@73$
(:cell:)
(:cell:)11000
(:cell:)
(:cell:)
(:cellnr:)Hébergement et nourriture observatoires
(:cell:)4 jours
(:cell:)840
(:cell:)
(:cell:)840
(:cell:)
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1200
(:cell:)1200
(:cell:)
(:cell:)
(:cellnr:)Transport La Palma - Tenerife 2x
(:cell:)-
(:cell:)480
(:cell:)
(:cell:)480
(:cell:)
(:cellnr:)Hébergement famille
(:cell:)180 jours
(:cell:)9600
(:cell:)
(:cell:)9600
(:cell:)
(:cellnr:)revenu Location maison \\
St-Camille
(:cell:)180 jours
(:cell:)
(:cell:)
(:cell:)
(:cell:)4500
(:cellnr:)Fin de location MPV
(:cell:)180 jours
(:cell:)
(:cell:)
(:cell:)
(:cell:)2500
(:cellnr:)TOTAL
(:cell:)
(:cell:)~26000
(:cell:)~19000
(:cell:)~12500
(:cell:)~7000
(:tableend:)

!!Références sur la pollution lumineuse à La Palma et Tenerife

*http://www.ing.iac.es/Astronomy/observing/conditions/skybr/skybr.html#lpol
*http://www.ing.iac.es/PR/newsletter/news9/ins2.html
*http://www.iac.es/proyecto/otpc/pollu.htm
*http://www.starlight2007.net/pdf/proceedings/Pedani.pdf
*http://www.starlight2007.net/pdf/proceedings/F_delaPaz.pdf
*http://www.starlight2007.net/pdf/proceedings/Javier_DiazCastro.pdf
*http://www.iac.es/site-testing/
*http://www.iac.es/servicios.php?op1=28&op2=69&lang=en
*http://magic.mppmu.mpg.de/publications/articles/LONS.ps.gz
*http://www.iac.es/site-testing/index.php?option=com_content&task=view&id=51&Itemid=26

!!Input data

*Reflectances modis dans les bandes 1-7 global 250m [[http://modis-sr.ltdri.org/MAIN_PUBLICATIONS/Papers/atbd_mod09.pdf|Article]]
**Vermote, E. F., & Vermeulen, A. (1999). Atmospheric correction algorithm:  Spectral reflectances (MOD09), ATBD version 4.0.
!![[DevisTenerife2009|Devis de projet]]

!![[Demanderqchp-tenerife|Demande de temps à Calcul Canada]]
!![[SemainesTenerife2009|Calendrier des activités par semaine]]

Lignes 230-231 ajoutées:

!![[LeinsTenerife2010|Liens]]
Lignes 236-240 ajoutées:
!![[LeinsTenerife2010|Liens]]
----


Lignes 114-115 ajoutées:

!![[ListeMaterielTenerife2010|Liste du matériel]]
Ligne 119 ajoutée:
Ligne 112 ajoutée:
!![[Demanderqchp-tenerife|Demande de temps à Calcul Canada]]
Ligne 112 ajoutée:
!![[SemainesTenerife2009|Calendrier des activités par semaine]]
Ligne 115 ajoutée:
Lignes 14-16 modifiées:
*Possibilité de compléter avec la conception des outils pour CélesTech (~20000$)
* endate du 10 avril 2008 il me reste un solde de 12500$ et 14k$ sont a venir. Il faut enlever 7k$ pour la 2e annee de maitrise a jd donc 19500 moins le spectrometre et eventuellement un ccd (4000$) ce qui laisse 15500$. Cette subvention prendra fin le 31 mars 2010 et les sommes devraient etre dépensées avant cette date.

en:
Lignes 8-9 modifiées:
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. Si du dégagement devait s'ajouter des laboratoire, je prendrais min 0,33-0.16/2=0.25/an sur le laboratoire soit le tout concentre à l'automne ce qui me ferait une session avec Physique II uniquement (0.33 etc + 0.25 x 2 + 0.16 = 100%). Si je vais jusqu'à 0,37/an alors je pourrais ne pas donner pfe à l'hiver 2009. Le cas extrème serait de ne pas donner de cours ni à l'hiver 2009  ni à l'automne 2009 ce qui correspond à 0,53 ETC/an soit 0,23/session à l'hiver et 0,84 ETC/session à l'automne.
en:
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. L'utilisation de ce dégagement est consigné ici:

http:
//spreadsheets.google.com/ccc?key=0AuiEg1ToyTykcDhReUtPRUNEQk1NX1RVa29JMlRZQXc&hl=fr


*Proposition d'un projet sur 3 mois TC mais réparti sur 6 mois à demi temps.
*Possibilité de compléter
avec la conception des outils pour CélesTech (~20000$)
* endate du 10 avril 2008 il me reste un solde de 12500$ et 14k$ sont a venir. Il faut enlever 7k$ pour la 2e annee
de maitrise a jd donc 19500 moins le spectrometre et eventuellement un ccd (4000$) ce qui laisse 15500$. Cette subvention prendra fin le 31 mars 2010 et les sommes devraient etre dépensées avant cette date. 

!!Budget famille 6 mois
Lignes 18-40 supprimées:
(:cellnr:)Session
(:cell:)etc
(:cellnr:)A 2008
(:cell:)0,39
(:cellnr:)H 2009
(:cell:)0,77
(:cellnr:)A 2009
(:cell:)0,16
(:cellnr:)H 2010
(:cell:)1,0
(:cellnr:)A 2010
(:cell:)?
(:cellnr:)H 2011
(:cell:)?
(:tableend:)


*Proposition d'un projet sur 3 mois TC mais réparti sur 6 mois à demi temps.
*Possibilité de compléter avec la conception des outils pour CélesTech (~20000$)
* endate du 10 avril 2008 il me reste un solde de 12500$ et 14k$ sont a venir. Il faut enlever 7k$ pour la 2e annee de maitrise a jd donc 19500 moins le spectrometre et eventuellement un ccd (4000$) ce qui laisse 15500$. Cette subvention prendra fin le 31 mars 2010 et les sommes devraient etre dépensées avant cette date.

!!Budget famille 6 mois
(:table border='1' width='80%':)
Ligne 60 modifiée:
(:cell:)180 jours@65$
en:
(:cell:)150 jours@73$
Ligne 62 modifiée:
(:cell:)11700
en:
(:cell:)11000
Lignes 8-9 modifiées:
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. Si du dégagement devait s'ajouter des laboratoire, je prendrais min 0,33/an soit le tout concentre à l'automne ce qui me ferait une session avec Physique II uniquement. Si je vais jusqu'à 0,44/an alors je pourrais ne pas donner pfe à l'hiver. Le cas extrème serait de ne pas donner de cours ni à l'hiver 2009  ni à l'automne 2009 ce qui correspond à 0,54 ETC/an soit 0,23/session à l'hiver et 0,84 ETC/session à l'automne.
en:
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. Si du dégagement devait s'ajouter des laboratoire, je prendrais min 0,33-0.16/2=0.25/an sur le laboratoire soit le tout concentre à l'automne ce qui me ferait une session avec Physique II uniquement (0.33 etc + 0.25 x 2 + 0.16 = 100%). Si je vais jusqu'à 0,37/an alors je pourrais ne pas donner pfe à l'hiver 2009. Le cas extrème serait de ne pas donner de cours ni à l'hiver 2009  ni à l'automne 2009 ce qui correspond à 0,53 ETC/an soit 0,23/session à l'hiver et 0,84 ETC/session à l'automne.
Lignes 3-4 modifiées:
!Sabbatique Tenerife 2009
en:
!Sabbatique Tenerife 2010
Lignes 21-24 modifiées:
(:cellnr:)
(:cell:)
(:cellnr:)
(:cell:)
en:
(:cellnr:)A 2010
(:cell:)?
(:cellnr:)H 2011
(:cell:)?
Lignes 23-24 ajoutées:
(:cellnr:)
(:cell:)
Lignes 21-22 ajoutées:
(:cellnr:)
(:cell:)
Lignes 8-9 modifiées:
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. Si du dégagement devait s'ajouter des laboratoire, je prendrais min 0,33/an soit le tout concentre à l'automne ce qui me ferait une session avec Physique II uniquement. Si je vais jusqu'à 0,44/an alors je pourrais ne pas donner pfe à l'hiver.
en:
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. Si du dégagement devait s'ajouter des laboratoire, je prendrais min 0,33/an soit le tout concentre à l'automne ce qui me ferait une session avec Physique II uniquement. Si je vais jusqu'à 0,44/an alors je pourrais ne pas donner pfe à l'hiver. Le cas extrème serait de ne pas donner de cours ni à l'hiver 2009  ni à l'automne 2009 ce qui correspond à 0,54 ETC/an soit 0,23/session à l'hiver et 0,84 ETC/session à l'automne.
Lignes 7-9 modifiées:
Dégagement offert est de 0,58 ETC
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an.
en:
Dégagement offert est de 0,58 ETC confirmé par le FQRNT pour 3 ans débutant avec la session Automne 2008.
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an. Si du dégagement devait s'ajouter des laboratoire, je prendrais min 0,33/an soit le tout concentre à l'automne ce qui me ferait une session avec Physique II uniquement. Si je vais jusqu'à 0,44/an alors je pourrais ne pas donner pfe à l'hiver.

Lignes 6-9 ajoutées:

Dégagement offert est de 0,58 ETC
P. Lefaivre dit qu'il peut être utiliser dans le temps en autant que ce ne soit pas à l'avance donc je peux deborder sur plus d'un an.

Lignes 15-16 modifiées:
(:cellnr:)
(:cell:)
en:
(:cellnr:)H 2010
(:cell:)1,0
Lignes 13-14 ajoutées:
(:cellnr:)A 2009
(:cell:)0,16
Lignes 13-14 ajoutées:
(:cellnr:)
(:cell:)
Lignes 11-12 modifiées:
(:cellnr:)
(:cell:)
en:
(:cellnr:)H 2009
(:cell:)0,77
Lignes 9-10 ajoutées:
(:cellnr:)A 2008
(:cell:)0,39
Lignes 6-8 modifiées:
(:table border=1 width=80%:)
en:
(:table border='1' width='80%':)
(:cellnr:)Session
(:cell:)etc
Lignes 10-13 supprimées:
(:cell:)
(:cellnr:)
(:cell:)
(:cell:)
Ligne 6 modifiée:
(:table now border=1 width=80%:)
en:
(:table border=1 width=80%:)
Lignes 5-15 ajoutées:
!!utilisation des ETC CRAQ
(:table now border=1 width=80%:)
(:cellnr:)
(:cell:)
(:cell:)
(:cellnr:)
(:cell:)
(:cell:)
(:tableend:)

Lignes 7-8 modifiées:
* endate du 10 avril 2008 il me reste un solde de 12500$ et 14k$ sont a venir. Il faut enlever 7k$ pour la 2e annee de maitrise a jd donc 19500 moins le spectrometre et eventuellement un ccd (4000$) ce qui laisse 15500$. En principe je peux utiliser 10k$ pour tenerife. Je vais proposer a Nicolas le 5000$ pour un portable si besoin est.
en:
* endate du 10 avril 2008 il me reste un solde de 12500$ et 14k$ sont a venir. Il faut enlever 7k$ pour la 2e annee de maitrise a jd donc 19500 moins le spectrometre et eventuellement un ccd (4000$) ce qui laisse 15500$. Cette subvention prendra fin le 31 mars 2010 et les sommes devraient etre dépensées avant cette date.
Lignes 83-84 modifiées:
(:cell:)~8500
(:cell:)~14000
en:
(:cell:)~12500
(:cell:)~7000
Lignes 66-68 modifiées:
(:cellnr:)Hébergement famille - autre
en:
(:cellnr:)revenu Location maison \\
St-Camille
(:cell:)180 jours
Lignes 72-74 ajoutées:
(:cell:)4500
(:cellnr:)Fin de location MPV
(:cell:)180 jours
Lignes 76-78 supprimées:
(:cellnr:)revenu Location maison \\
St-Camille
(:cell:)180 jours
Lignes 78-79 ajoutées:
(:cell:)2500
(:cellnr:)TOTAL
Lignes 80-89 supprimées:
(:cell:)
(:cell:)4500
(:cellnr:)Fin de location MPV
(:cell:)180 jours
(:cell:)
(:cell:)
(:cell:)
(:cell:)2500
(:cellnr:)TOTAL
(:cell:)
Ligne 27 modifiée:
(:cell:)750
en:
(:cell:)1500
Ligne 38 ajoutée:
(:cell:)
Ligne 39 supprimée:
(:cell:)11700
Lignes 50-51 modifiées:
(:cell:)1000
(:cell:)1000
en:
(:cell:)1200
(:cell:)1200
Lignes 56-57 modifiées:
(:cell:)400
(:cell:)400
en:
(:cell:)480
Ligne 58 ajoutée:
(:cell:)480
Ligne 60 modifiée:
(:cellnr:)Hébergement famille - travail
en:
(:cellnr:)Hébergement famille
Ligne 64 modifiée:
(:cell:)7700
en:
(:cell:)9600
Ligne 74 modifiée:
(:cell:)360 jours
en:
(:cell:)180 jours
Ligne 78 modifiée:
(:cell:)9000
en:
(:cell:)4500
Ligne 80 modifiée:
(:cell:)360 jours
en:
(:cell:)180 jours
Ligne 84 modifiée:
(:cell:)5000
en:
(:cell:)2500
Ligne 88 modifiée:
(:cell:)~10000
en:
(:cell:)~19000
Lignes 47-52 supprimées:
(:cellnr:)Hébergement observations La Palma
(:cell:)13 jours
(:cell:)2000
(:cell:)2000
(:cell:)
(:cell:)
Lignes 32-33 modifiées:
(:cell:)1875
(:cell:)1875
en:
(:cell:)4500
(:cell:)4500
Lignes 42-44 modifiées:
(:cellnr:)Hébergement et nourriture Tenerife observatoire
(:cell:)2 jours
(:cell:)420
en:
(:cellnr:)Hébergement et nourriture observatoires
(:cell:)4 jours
(:cell:)840
Ligne 46 modifiée:
(:cell:)420
en:
(:cell:)840
Lignes 53-58 supprimées:
(:cellnr:)Hébergement  et nourriture La Palma observatoire 2 jours
(:cell:)2 jours
(:cell:)?
(:cell:)
(:cell:)420
(:cell:)
Lignes 53-58 supprimées:
(:cellnr:)Perdiemme La Palma
(:cell:)13 jours
(:cell:)850
(:cell:)850
(:cell:)
(:cell:)
Ligne 22 modifiée:
(:cell:)IAC?
en:
(:cell:)1600
Lignes 24-25 modifiées:
(:cellnr:)Location minivan observations Tenerife
(:cell:)15 jours
en:
(:cellnr:)Location minivan observations
(:cell:)30 jours
(:cell:)1500
Ligne 27 supprimée:
(:cell:)750
Lignes 30-33 modifiées:
(:cellnr:)Hébergement observations Tenerife
(:cell:)13 jours
(:cell:)2000
(:cell:)2000
en:
(:cellnr:)Hébergement observations
(:cell:)30 jours
(:cell:)1875
(:cell:)1875
Lignes 36-39 modifiées:
(:cellnr:)Perdiemme Tenerife
(:cell:)13 jours
(:cell:)850
(:cell:)850
en:
(:cellnr:)Perdiemme
(:cell:)180 jours@65$
(:cell:)11700
(:cell:)11700
Lignes 47-52 supprimées:
(:cellnr:)Location minivan observations La Palma
(:cell:)15 jours
(:cell:)750
(:cell:)750
(:cell:)
(:cell:)
Ligne 18 modifiée:
(:cellnr:)Transport international Martin
en:
(:cellnr:)Transport international famille
Lignes 20-21 modifiées:
(:cell:)1500
(:cell:)1500
en:
(:cell:)7500
Ligne 22 ajoutée:
(:cell:)IAC?
Lignes 23-28 supprimées:
(:cellnr:)Transport international famille
(:cell:)-
(:cell:)6000
(:cell:)
(:cell:)IAC?
(:cell:)
Ligne 9 modifiée:
!!Budget
en:
!!Budget famille 6 mois
Ligne 139 ajoutée:
**Vermote, E. F., & Vermeulen, A. (1999). Atmospheric correction algorithm:  Spectral reflectances (MOD09), ATBD version 4.0.
Lignes 136-138 ajoutées:
!!Input data

*Reflectances modis dans les bandes 1-7 global 250m [[http://modis-sr.ltdri.org/MAIN_PUBLICATIONS/Papers/atbd_mod09.pdf|Article]]
Lignes 136-293 modifiées:
!!Devis de projet

!!!Title

Assessing the contribution from different parts of Tenerife and La Palma islands to artificial spectral sky luminance levels over European Northern Observatory sites.

!!!Summary

We suggest to use a third generation sky luminance model which account for heterogeneous distribution of light fixtures, ground reflectance and topography along with hyperspectral sky luminance measurements to infer the relavite contribution of differents zones of Tenerife and La Palma islands at astronomical observation sites. This sensitive study will allow the identification and evaluation of critical island zones. The project aim to identify zones at which any ligthing level increase or decrease may have a larger impact on light pollution at both European Northern Observatory sites, and then help to control and/or reduce light pollution levels.

!!!Methodology

As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition over at least 20 sampling sites. Sites will be choosen  in order to sample uniformly both islands and will fit with island modeling zones. Modeling zones may be defined for example as a central zone around the observatory and as 45 degrees radial subdivision of the remaining surface. For each of these observing sites, measurement should be made toward zenith and forward/backward along observer to main cities line of sight at 15 deg. above horizon. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument, which will be used to accomplish this task, is the third version of the Spectrometer for Aerosol Night Detection (SAND-3). SAND-3 have been designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at the Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, FLWO, USNO, Lowell, Mégantic). The field campaign proposed here may require more or less 2 month depending on clear sky conditions.

The second step of the project will be to acquire input database required to run our model called ILLUMINA (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (like Kocifaj 2007). First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also used empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in its capability to simulate any heterogeneous distribution of a variety of light fixture with their own intensities, spectral dependances, and angular light output pattern. The model may also account for shadowing effects associated with topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1'^st^' and 2'^nd^' order scattering and extinction from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA also account for the size distribution and composition of aerosol content which may be quite usefull during pollution events like forest fires or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), and ground spectral reflectance. Model also requires typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from local meteorological station and aerosol optical properties from active NASA-AERONET sunphotometers located on Tenerife island.

The third step will be to run the model for each observing night with the complete input dataset and compare model results with the first half of sky luminance measurements. As stated earlier this step aimed to calibrate the model in order to fit observations. Then the second half of measurements will be used to map typical model errors.

Finally we will perform about 40 model run by "lighting on" alternatively only one sampling zone at a time. The goal of that experiment is to determine the contribution of each zone to the sky luminance at each observing site so that ones should be able to infer the impact of local change in lighting device inventory. That kind of results will be extremely usefull to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).

!!!Time table

The projet will take place over a six month period. Major project milestones along with estimated associated time are listed below .

*September 2009 - Beginning of the project
*September - October 2009 - Sky spectral luminance sampling experiment across Tenerife and La Palma
*November 2009 - Preparation of the model input dataset
*December 2009 - Model calibration and estimation of errors
*January 2010 - Islands zones modeling experiments
*Febuary 2010 - Final report and/or publication writing


!!!Budget requirements estimation

(:table border='1' width='80%':)
(:cellnr:)
(:cell align='center':)Cost
(:cell align='center':)Financing organism\\
 \\
Sherbrooke University
(:cell align='center':)Financing organism\\
\\
FQRNT
(:cell align='center':)Financing organism\\
\\
IAC
(:cellnr:)Task/item
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)
(:cellnr:)International transport
(:cell align='center':)1000 Euros
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)x
(:cellnr:)Car rental - Tenerife observations (~15 nights)
(:cell align='center':)1200 Euros
(:cell align='center':)
(:cell align='center':)x
(:cell align='center':)
(:cellnr:)Lodging - Tenerife observations (~15 nights)
(:cell align='center':)1500 Euros
(:cell align='center':)
(:cell align='center':)x
(:cell align='center':)
(:cellnr:)Meals - Tenerife observations (~15 nights)
(:cell align='center':)650 Euros
(:cell align='center':)
(:cell align='center':)x
(:cell align='center':)
(:cellnr:)Meals and logding -Tenerife observatory (2 nights)
(:cell align='center':)-
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)x
(:cellnr:)Car rental - La Palma observations (~20 nights)
(:cell align='center':)1200 Euros
(:cell align='center':)
(:cell align='center':)x
(:cell align='center':)
(:cellnr:)Lodging - La Palma observations (~15 nights)
(:cell align='center':)1500 Euros
(:cell align='center':)
(:cell align='center':)x
(:cell align='center':)
(:cellnr:)Meals - La Palma observations (~15 nights)
(:cell align='center':)650 Euros
(:cell align='center':)
(:cell align='center':)x
(:cell align='center':)
(:cellnr:)Meals and logding - La Palma observatory (2 nights)
(:cell align='center':)-
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)x
(:cellnr:)Gas
(:cell align='center':)800 Euros
(:cell align='center':)
(:cell align='center':)x
(:cell align='center':)
(:cellnr:)Inter-island Transport (2 flights)
(:cell align='center':)300 Euros
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)x
(:cellnr:)Food and accomodation stipend (6 month)
(:cell align='center':)6000 Euros
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)x
(:cellnr:)SAND-3 utilization
(:cell align='center':)-
(:cell align='center':)x
(:cell align='center':)
(:cell align='center':)
(:cellnr:)Computing time
(:cell align='center':)-
(:cell align='center':)
(:cell align='center':)x
(:cell align='center':)x
(:cellnr:)Researcher salary
(:cell align='center':)25000 Euros
(:cell align='center':)x
(:cell align='center':)
(:cell align='center':)
(:cellnr:)Researcher computer
(:cell align='center':)-
(:cell align='center':)x
(:cell align='center':)
(:cell align='center':)
(:cellnr:)Office w internet connection & Linux pc
(:cell align='center':)-
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)x
(:cellnr:)TOTAL
(:cell align='center':)
(:cell align='center':)25000 Euros
(:cell align='center':)7500 Euros
(:cell align='center':)7300 Euros
(:tableend:)

!!!References

*Aubé, M., Franchomme-Fosse, L., Robert-Staehler, P. and Houle, V. (2005). Light pollution modelling and detection in a heterogeneous environment : Toward a night time aerosol optical depth retrieval method. in Atmospheric and environmental remote sensing data processing and utilization : Numerical atmospheric prediction and environmental monitoring (Vol. 5890, p. 1-9), International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States.

*Aubé , M. (2007). Light pollution modeling and detection in a heterogeneous environment. in e C. Marìn and J. Jafari (Eds.), Starlight 2007 (p. 119-126). European Council for an Energy Efficient Economy. Aumann, C. A. (2007). A methodology for developing simulation models of complex systems. Ecological Modelling, vol. 202, no 3-4, p. 385-396. Balci, O. (1994). Validation, verification, and testing techniques throughout the life cycle of a simulation study. Annals of Operations Research, vol. 53, no 1-4, p. 121-173.

*Cinzano, P., Falchi, F., Elvidge, C. D. and Baugh, K. E. (2000). The artificial night sky brightness mapped from dmsp satellite operational linescan system measurements. Monthly Notices of the Royal Astronomical Society, vol. 318, no 3, p. 641-657.

*Garstang, R. H. (1986). Model for artificial night-sky illumination. Publications of the Astronomical Society of the Pacific, vol. 98, no 601, p. 364-375.

*Kocifaj, M. (2007). Light-pollution model for cloudy and cloudless night skies with ground-based light sources. Applied Optics, vol. 46, no 15, p. 3013-3022.

*Walker, M. F. (1977). The effects of urban lighting on the brightness of the night sky. Publications of the Astronomical Society of the Pacific, vol. 89, p. 405-409.
!!!

en:
!![[DevisTenerife2009|Devis de projet]]
Ligne 192 modifiée:
(:cellnr:)Car location - Tenerife observations (~15 nights)
en:
(:cellnr:)Car rental - Tenerife observations (~15 nights)
Ligne 212 modifiée:
(:cellnr:)Car location - La Palma observations (~20 nights)
en:
(:cellnr:)Car rental - La Palma observations (~20 nights)
Ligne 257 modifiée:
(:cellnr:)Researcher salary - half time
en:
(:cellnr:)Researcher salary
Ligne 267 modifiée:
(:cellnr:)Office w internet connection & Linux pc access
en:
(:cellnr:)Office w internet connection & Linux pc
Lignes 148-155 modifiées:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of at least 20 sampling sites. The sites will be choosen  in order to cover uniformly both islands and will fit with island modeling zones. Modeling zones may be defined for example as a central zone around the observatory and 45 degrees radial subdivision of the remaining surface. For each of these observing sites, measurement should be made toward zenith and forward/backward along observer to main cities line of sight at 15 deg. above horizon. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument, which will be used to accomplish this task, is the third version of the Spectrometer for Aerosol Night Detection (SAND-3) have been designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at the Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, FLWO, USNO, Lowell, Mégantic). The field campaign proposed here may require more or less 2 month depending on clear sky conditions.

The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to simulate any heterogeneous distribution of a variety of light fixture with their own intensities, spectral dependances, and angular light output pattern. The model may also account for shadowing effects associated with topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules along with extinction and consider the vertical profile of atmospheric constituants. ILLUMINA also account for the size distribution and composition of aerosol content which may be quite usefull during pollution events like forest fires or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), and ground spectral reflectance. Model also requires typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from local meteorological station and aerosol optical properties from active NASA-AERONET sunphotometers located on Tenerife island.

The third step will be to run
the model for each observing night with the complete input dataset and compare model results with the first half of sky luminance measurements. As stated earlier this step aimed to calibrate the model in order to fit observations. Then the second half of measurements will be used to map typical model errors using remaining results.

Finally we will perform about 40 model run by "lighting on" alternatively only one sampling zone at a time. The goal
of that experiment is to determine the relative contribution of each sectors to the sky luminance at each observation sites so that ones should be able to infer the impact of localised change in lighting device inventory. That kind of results will be extremely usefull to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).
en:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition over at least 20 sampling sites. Sites will be choosen  in order to sample uniformly both islands and will fit with island modeling zones. Modeling zones may be defined for example as a central zone around the observatory and as 45 degrees radial subdivision of the remaining surface. For each of these observing sites, measurement should be made toward zenith and forward/backward along observer to main cities line of sight at 15 deg. above horizon. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument, which will be used to accomplish this task, is the third version of the Spectrometer for Aerosol Night Detection (SAND-3). SAND-3 have been designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at the Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, FLWO, USNO, Lowell, Mégantic). The field campaign proposed here may require more or less 2 month depending on clear sky conditions.

The second step of the project will be to acquire input database required to run our model called ILLUMINA (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (like Kocifaj 2007). First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also used empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in its capability to simulate any heterogeneous distribution of a variety of light fixture with their own intensities, spectral dependances, and angular light output pattern. The model may also account for shadowing effects associated with topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1'^st^' and 2'^nd^' order scattering and extinction from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA also account for the size distribution and composition of aerosol content which may be quite usefull during pollution events like forest fires or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), and ground spectral reflectance. Model also requires typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from local meteorological station and aerosol optical properties from active NASA-AERONET sunphotometers located on Tenerife island.

The third step will be to run the model for each observing night with
the complete input dataset and compare model results with the first half of sky luminance measurements. As stated earlier this step aimed to calibrate the model in order to fit observations. Then the second half of measurements will be used to map typical model errors.

Finally we will perform about 40 model run by "lighting on" alternatively only one sampling zone at a time. The goal of that experiment is to determine the contribution
of each zone to the sky luminance at each observing site so that ones should be able to infer the impact of local change in lighting device inventory. That kind of results will be extremely usefull to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).
Lignes 144-145 modifiées:
We suggest to use a third generation gridded sky luminance model which account for heterogeneous distribution of light fixtures, ground reflectance and topography along with hyperspectral sky luminance measurements to infer the relavite contribution of differents zones of Tenerife and La Palma islands at astronomical observation sites. This sensitive study will allow the quantization of critical zones. In term help to identify zones at which any ligthing level increase or decrease may have a larger impact on light pollution at both European Northern Observatory sites.
en:
We suggest to use a third generation sky luminance model which account for heterogeneous distribution of light fixtures, ground reflectance and topography along with hyperspectral sky luminance measurements to infer the relavite contribution of differents zones of Tenerife and La Palma islands at astronomical observation sites. This sensitive study will allow the identification and evaluation of critical island zones. The project aim to identify zones at which any ligthing level increase or decrease may have a larger impact on light pollution at both European Northern Observatory sites, and then help to control and/or reduce light pollution levels.
Lignes 140-141 modifiées:
Assessing the relative contribution from different parts of Tenerife and La Palma islands to artificial sky spectral luminance levels over European Northern Observatory sites.
en:
Assessing the contribution from different parts of Tenerife and La Palma islands to artificial spectral sky luminance levels over European Northern Observatory sites.
Ligne 236 modifiée:
(:cell align='center':)x
en:
(:cell align='center':)
Lignes 275-276 modifiées:
(:cell align='center':)8900 Euros
(:cell align='center':)8100 Euros
en:
(:cell align='center':)7500 Euros
(:cell align='center':)7300 Euros
Lignes 192-193 modifiées:
(:cellnr:)Car location - Tenerife observations (~20 nights)
(:cell align='center':)1600 Euros
en:
(:cellnr:)Car location - Tenerife observations (~15 nights)
(:cell align='center':)1200 Euros
Lignes 197-198 modifiées:
(:cellnr:)Lodging - Tenerife observations (~20 nights)
(:cell align='center':)2000 Euros
en:
(:cellnr:)Lodging - Tenerife observations (~15 nights)
(:cell align='center':)1500 Euros
Lignes 202-203 modifiées:
(:cellnr:)Meals - Tenerife observations (~20 nights)
(:cell align='center':)850 Euros
en:
(:cellnr:)Meals - Tenerife observations (~15 nights)
(:cell align='center':)650 Euros
Ligne 213 modifiée:
(:cell align='center':)1600 Euros
en:
(:cell align='center':)1200 Euros
Lignes 217-218 modifiées:
(:cellnr:)Lodging - La Palma observations (~20 nights)
(:cell align='center':)2000 Euros
en:
(:cellnr:)Lodging - La Palma observations (~15 nights)
(:cell align='center':)1500 Euros
Lignes 222-223 modifiées:
(:cellnr:)Meals - La Palma observations (~20 nights)
(:cell align='center':)850 Euros
en:
(:cellnr:)Meals - La Palma observations (~15 nights)
(:cell align='center':)650 Euros
Lignes 140-141 modifiées:
Assessing the relative contribution from different parts of Tenerife and La Palma islands to artificial sky spectral luminance levels at European Northern Observatory sites.
en:
Assessing the relative contribution from different parts of Tenerife and La Palma islands to artificial sky spectral luminance levels over European Northern Observatory sites.
Ligne 169 supprimée:
!!Budget
Ligne 295 ajoutée:
Lignes 150-155 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to simulate any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull during pollution events like forest fires or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active NASA GSFC AERONET sunphotometers located on Tenerife island.

The third step is to run the model with the complete input dataset and compare
model results with the first half of sky luminance measurements. As stated earlier this step aimed to calibrate the model in order to fit observations. Then the second half of measurements will be used to map typical model errors.

Finally we will perform modeling by "lighting on"
only one sampling zone at a time. The goal of that experiment is to determine the relative contribution of each sectors to the sky luminance at each observation sites so that ones should be able to infer the impact of localised change in lighting device inventory. That kind of results will be extremely usefull to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to simulate any heterogeneous distribution of a variety of light fixture with their own intensities, spectral dependances, and angular light output pattern. The model may also account for shadowing effects associated with topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules along with extinction and consider the vertical profile of atmospheric constituants. ILLUMINA also account for the size distribution and composition of aerosol content which may be quite usefull during pollution events like forest fires or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), and ground spectral reflectance. Model also requires typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from local meteorological station and aerosol optical properties from active NASA-AERONET sunphotometers located on Tenerife island.

The third step will be to run the
model for each observing night with the complete input dataset and compare model results with the first half of sky luminance measurements. As stated earlier this step aimed to calibrate the model in order to fit observations. Then the second half of measurements will be used to map typical model errors using remaining results.

Finally we will perform about 40 model run by "lighting on" alternatively
only one sampling zone at a time. The goal of that experiment is to determine the relative contribution of each sectors to the sky luminance at each observation sites so that ones should be able to infer the impact of localised change in lighting device inventory. That kind of results will be extremely usefull to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).
Lignes 148-149 modifiées:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of at least 20 sampling sites. The sites will be choosen  in order to cover uniformly both islands and will fit with island modeling zones. The zone may be defined for example as a central zone centered on the observatory and a 45 degrees radial subdivision of the remaining surface. We  For each of these observing sites, measurement should me made toward zenith and forward/backward along observer to main cities line of sight at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND-3) designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, Whipple, USNO, Lowell, Mégantic). The field campaign proposed here may require about 2 month depending on clear sky conditions.
en:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of at least 20 sampling sites. The sites will be choosen  in order to cover uniformly both islands and will fit with island modeling zones. Modeling zones may be defined for example as a central zone around the observatory and 45 degrees radial subdivision of the remaining surface. For each of these observing sites, measurement should be made toward zenith and forward/backward along observer to main cities line of sight at 15 deg. above horizon. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument, which will be used to accomplish this task, is the third version of the Spectrometer for Aerosol Night Detection (SAND-3) have been designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at the Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, FLWO, USNO, Lowell, Mégantic). The field campaign proposed here may require more or less 2 month depending on clear sky conditions.
Lignes 148-149 modifiées:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of at least 20 sampling sites. The sites will be choosen  in order to cover uniformly islands and will fit with island modeling zones. The zone may be defined for example as a central zone centered on the observatory and a 45 degrees radial subdivision of the remaining surface. We  For each of these observing sites, measurement should me made toward zenith and forward/backward along observer to main cities line of sight at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND-3) designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, Whipple, USNO, Lowell, Mégantic). The field campaign proposed here may require about 2 month depending on clear sky conditions.
en:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of at least 20 sampling sites. The sites will be choosen  in order to cover uniformly both islands and will fit with island modeling zones. The zone may be defined for example as a central zone centered on the observatory and a 45 degrees radial subdivision of the remaining surface. We  For each of these observing sites, measurement should me made toward zenith and forward/backward along observer to main cities line of sight at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND-3) designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, Whipple, USNO, Lowell, Mégantic). The field campaign proposed here may require about 2 month depending on clear sky conditions.
Lignes 148-149 modifiées:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of around 30 sampling sites. The sites will be randomly choosen (except for the observatories sites) in order to cover uniformly and without bias the geographical domains. For each of these observing sites, measurement should me made toward zenith and forward/backward along observer to main cities line of sight at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND-3) designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, Whipple, USNO, Lowell, Mégantic). The field campaign proposed here may require about 2 month depending on clear sky conditions.
en:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of at least 20 sampling sites. The sites will be choosen  in order to cover uniformly islands and will fit with island modeling zones. The zone may be defined for example as a central zone centered on the observatory and a 45 degrees radial subdivision of the remaining surface. We For each of these observing sites, measurement should me made toward zenith and forward/backward along observer to main cities line of sight at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND-3) designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, Whipple, USNO, Lowell, Mégantic). The field campaign proposed here may require about 2 month depending on clear sky conditions.
Lignes 148-149 modifiées:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of around 40 sampling sites. The sites will be randomly choosen (except for the observatories sites) in order to cover uniformly and without bias the geographical domains. For each of these observing sites, measurement should me made toward zenith and forward/backward along observer to main cities line of sight at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND-3) designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, Whipple, USNO, Lowell, Mégantic). The field campaign proposed here may require about 2 month depending on clear sky conditions.
en:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of around 30 sampling sites. The sites will be randomly choosen (except for the observatories sites) in order to cover uniformly and without bias the geographical domains. For each of these observing sites, measurement should me made toward zenith and forward/backward along observer to main cities line of sight at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND-3) designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, Whipple, USNO, Lowell, Mégantic). The field campaign proposed here may require about 2 month depending on clear sky conditions.
Lignes 150-151 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to simulate any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull during pollution events like forest fires or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to simulate any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull during pollution events like forest fires or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active NASA GSFC AERONET sunphotometers located on Tenerife island.
Lignes 154-155 modifiées:
Finally the islands geographical domain will be subdivised in sectors and then only one sector at a time will be "light on". The goal of that experiment is to determine the relative contribution of each sectors to the sky luminance at each observation sites so that ones should be able to infer the impact of localised change in lighting device inventory. That kind of results will be extremely usefull to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers (IAC or others).
en:
Finally we will perform modeling by "lighting on" only one sampling zone at a time. The goal of that experiment is to determine the relative contribution of each sectors to the sky luminance at each observation sites so that ones should be able to infer the impact of localised change in lighting device inventory. That kind of results will be extremely usefull to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers and authorities (IAC or others).
Lignes 150-151 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to simulate any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull during pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to simulate any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull during pollution events like forest fires or saharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
Lignes 150-151 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to simulate any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to simulate any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull during pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
Lignes 150-151 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to simulate any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
Lignes 150-151 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside its capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
Lignes 150-151 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground (circular cities) and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
Lignes 148-149 modifiées:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of around 40 sampling sites. The sites will be randomly choosen (except for the observatories sites) in order to cover uniformly and without bias the geographical domains. For each of these observing sites, measurement should me made toward zenith and forward/backward along observer to main cities line of sight at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND-3) designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, Whipple, USNO, Lowell, Mégantic). The field campaign proposed for the present study may require about 2 month depending on clear sky conditions.
en:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of around 40 sampling sites. The sites will be randomly choosen (except for the observatories sites) in order to cover uniformly and without bias the geographical domains. For each of these observing sites, measurement should me made toward zenith and forward/backward along observer to main cities line of sight at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND-3) designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, Whipple, USNO, Lowell, Mégantic). The field campaign proposed here may require about 2 month depending on clear sky conditions.
Ligne 164 modifiée:
*January 2010 - Subsectors modeling experiments
en:
*January 2010 - Islands zones modeling experiments
Lignes 148-149 modifiées:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the sky brightness levels. This field campaign should involve the acquisition of around 40 sampling sites. The sites will be randomly choosen (except for the observatories sites) in order to cover uniformly and without bias the geographical domains. For each of these observing sites, measurement should me made toward zenith and toward/backward main cities at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the prediction of a gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which wich will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND) designed by our group. The spectrometer will be calibrated prior to the experiment in the Centre d'Application et de Recherche en TÉLédétection (CARTEL) at University of Sherbrooke, Canada. I am a associate researcher of that remote sensing research centre. The field campaign may require about 2 month depending on clear sky conditions.
en:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the spectral sky brightness levels. This field campaign should involve the acquisition of around 40 sampling sites. The sites will be randomly choosen (except for the observatories sites) in order to cover uniformly and without bias the geographical domains. For each of these observing sites, measurement should me made toward zenith and forward/backward along observer to main cities line of sight at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND-3) designed by our group. The spectrometer is robotized so that it may operate by its own during all night long. The spectrometer will be recalibrated prior to the experiment at Centre d'Application et de Recherche en TÉLédétection (CARTEL) laboratory located in University of Sherbrooke, Canada. SAND have been used for about 4 years to characterize light pollution on many astronomical sites across North America (e.g. Palomar, KPNO, Whipple, USNO, Lowell, Mégantic). The field campaign proposed for the present study may require about 2 month depending on clear sky conditions.
Lignes 144-145 modifiées:
We suggest to use a third generation gridded sky luminance model which account for heterogeneous distribution of light fixtures, ground reflectance and topography along with hyperspectral sky luminance measurements to infer the relavite contribution of Tenerife and La Palma islands subsectors at astronomical observation sites. This sensitive study will allow the quantization of sensitive sectors. In term help to identify sectors at which any ligthing level increase or decrease may have a larger impact on light pollution levels at both European Northern Observatory sites.
en:
We suggest to use a third generation gridded sky luminance model which account for heterogeneous distribution of light fixtures, ground reflectance and topography along with hyperspectral sky luminance measurements to infer the relavite contribution of differents zones of Tenerife and La Palma islands at astronomical observation sites. This sensitive study will allow the quantization of critical zones. In term help to identify zones at which any ligthing level increase or decrease may have a larger impact on light pollution at both European Northern Observatory sites.
Lignes 140-141 modifiées:
Assessing the relative contribution from Tenerife and La Palma islands sectors to artificial sky spectral luminance levels at European Northern Observatory sites.
en:
Assessing the relative contribution from different parts of Tenerife and La Palma islands to artificial sky spectral luminance levels at European Northern Observatory sites.
Lignes 150-151 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, ) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, Kocifaj 2007) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986, Cinzano 2000) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
Lignes 150-151 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model (e.g. Aubé ''et al.'' 2005, ) . First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
Lignes 285-286 supprimées:
*Chalkias, C., Petrakis, M., Psiloglou, B. and Lianou, M. (2006). Modelling of light pollution in suburban areas using remotely sensed imagery and gis. Journal of Environmental Management, vol. 79, no 1, p. 57-63.
Lignes 284-287 modifiées:
*Aubé , M. (2007). Light pollution modeling and detection in a heterogeneous environment. in e C. Marìn and J. Jafari (Eds.), Starlight 2007 (p. 119-126). European Council for an Energy Efficient i Economy. Aumann, C. A. (2007). A methodology for developing simulation models of complex systems. Ecological Modelling, vol. 202, no 3-4, p. 385-396. Balci, O. (1994). Validation, verification, and testing techniques throughout the life cycle of a simulation study. Annals of Operations Research, vol. 53, no 1-4, p. 121-173.

*Chalkias, C., Petrakis, M., Psiloglou, B. and Lianou, M. (2006). Modelling of light pollution in suburban areas using remotely sensed imagery and gis. Journal of Environmental Management,, vol. 79, no 1, p. 57-63.
en:
*Aubé , M. (2007). Light pollution modeling and detection in a heterogeneous environment. in e C. Marìn and J. Jafari (Eds.), Starlight 2007 (p. 119-126). European Council for an Energy Efficient Economy. Aumann, C. A. (2007). A methodology for developing simulation models of complex systems. Ecological Modelling, vol. 202, no 3-4, p. 385-396. Balci, O. (1994). Validation, verification, and testing techniques throughout the life cycle of a simulation study. Annals of Operations Research, vol. 53, no 1-4, p. 121-173.

*Chalkias, C., Petrakis, M., Psiloglou, B. and Lianou, M. (2006). Modelling of light pollution in suburban areas using remotely sensed imagery and gis. Journal of Environmental Management, vol. 79, no 1, p. 57-63.
Lignes 281-294 ajoutées:

*Aubé, M., Franchomme-Fosse, L., Robert-Staehler, P. and Houle, V. (2005). Light pollution modelling and detection in a heterogeneous environment : Toward a night time aerosol optical depth retrieval method. in Atmospheric and environmental remote sensing data processing and utilization : Numerical atmospheric prediction and environmental monitoring (Vol. 5890, p. 1-9), International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States.

*Aubé , M. (2007). Light pollution modeling and detection in a heterogeneous environment. in e C. Marìn and J. Jafari (Eds.), Starlight 2007 (p. 119-126). European Council for an Energy Efficient i Economy. Aumann, C. A. (2007). A methodology for developing simulation models of complex systems. Ecological Modelling, vol. 202, no 3-4, p. 385-396. Balci, O. (1994). Validation, verification, and testing techniques throughout the life cycle of a simulation study. Annals of Operations Research, vol. 53, no 1-4, p. 121-173.

*Chalkias, C., Petrakis, M., Psiloglou, B. and Lianou, M. (2006). Modelling of light pollution in suburban areas using remotely sensed imagery and gis. Journal of Environmental Management,, vol. 79, no 1, p. 57-63.

*Cinzano, P., Falchi, F., Elvidge, C. D. and Baugh, K. E. (2000). The artificial night sky brightness mapped from dmsp satellite operational linescan system measurements. Monthly Notices of the Royal Astronomical Society, vol. 318, no 3, p. 641-657.

*Garstang, R. H. (1986). Model for artificial night-sky illumination. Publications of the Astronomical Society of the Pacific, vol. 98, no 601, p. 364-375.

*Kocifaj, M. (2007). Light-pollution model for cloudy and cloudless night skies with ground-based light sources. Applied Optics, vol. 46, no 15, p. 3013-3022.

*Walker, M. F. (1977). The effects of urban lighting on the brightness of the night sky. Publications of the Astronomical Society of the Pacific, vol. 89, p. 405-409.
Ligne 209 modifiée:
(:cell align='center':)270 Euros
en:
(:cell align='center':)-
Ligne 229 modifiée:
(:cell align='center':)270 Euros
en:
(:cell align='center':)-
Ligne 237 modifiée:
(:cell align='center':)
en:
(:cell align='center':)x
Ligne 241 ajoutée:
(:cell align='center':)
Ligne 242 supprimée:
(:cell align='center':)
Lignes 276-277 modifiées:
(:cell align='center':)10000 Euros
(:cell align='center':)7540 Euros
en:
(:cell align='center':)8900 Euros
(:cell align='center':)8100 Euros
Ligne 260 supprimée:
(:cell align='center':)x
Ligne 262 ajoutée:
(:cell align='center':)
Lignes 275-277 modifiées:
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)
en:
(:cell align='center':)25000 Euros
(:cell align='center':)10000 Euros
(:cell align='center':)7540 Euros
Lignes 173-174 supprimées:
(:cell align='center':)Financing organism \\
CÉGEP & University of Sherbrooke
Lignes 175-177 ajoutées:
 \\
Sherbrooke University
(:cell align='center':)Financing organism\\
Lignes 257-258 modifiées:
(:cellnr:)Researcher salary
(:cell align='center':)-
en:
(:cellnr:)Researcher salary - half time
(:cell align='center':)25000 Euros
Ligne 240 ajoutée:
(:cell align='center':)x
Ligne 241 supprimée:
(:cell align='center':)
Ligne 191 modifiée:
(:cell align='center':)
en:
(:cell align='center':)x
Ligne 195 modifiée:
(:cell align='center':)750
en:
(:cell align='center':)x
Ligne 200 modifiée:
(:cell align='center':)2000
en:
(:cell align='center':)x
Ligne 205 modifiée:
(:cell align='center':)850
en:
(:cell align='center':)x
Ligne 215 modifiée:
(:cell align='center':)750
en:
(:cell align='center':)x
Ligne 220 modifiée:
(:cell align='center':)2000
en:
(:cell align='center':)x
Ligne 225 modifiée:
(:cell align='center':)850
en:
(:cell align='center':)x
Ligne 235 modifiée:
(:cell align='center':)1000
en:
(:cell align='center':)x
Lignes 262-264 modifiées:
(:cellnr:)
en:
(:cellnr:)Researcher computer
(:cell align='center':)-
(:cell align='center':)x
Lignes 267-268 ajoutées:
(:cellnr:)Office w internet connection & Linux pc access
(:cell align='center':)-
Lignes 270-273 supprimées:
(:cellnr:)Office w internet connection & Linux pc access
(:cell align='center':)-
(:cell align='center':)
(:cell align='center':)
Ligne 262 modifiée:
(:cellnr:)Office w internet connection
en:
(:cellnr:)
Lignes 265-266 supprimées:
(:cell align='center':)x
(:cellnr:)TOTAL
Lignes 267-268 ajoutées:
(:cellnr:)Office w internet connection & Linux pc access
(:cell align='center':)-
Lignes 271-272 ajoutées:
(:cell align='center':)x
(:cellnr:)TOTAL
Lignes 274-276 ajoutées:
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)
Ligne 172 modifiée:
(:cellnr align='center':)
en:
(:cellnr:)
Ligne 182 modifiée:
(:cellnr align='center':)Task/item
en:
(:cellnr:)Task/item
Ligne 187 modifiée:
(:cellnr align='center':)International transport
en:
(:cellnr:)International transport
Ligne 192 modifiée:
(:cellnr align='center':)Car location - Tenerife observations (~20 nights)
en:
(:cellnr:)Car location - Tenerife observations (~20 nights)
Ligne 197 modifiée:
(:cellnr align='center':)Lodging - Tenerife observations (~20 nights)
en:
(:cellnr:)Lodging - Tenerife observations (~20 nights)
Ligne 202 modifiée:
(:cellnr align='center':)Meals - Tenerife observations (~20 nights)
en:
(:cellnr:)Meals - Tenerife observations (~20 nights)
Ligne 207 modifiée:
(:cellnr align='center':)Meals and logding -Tenerife observatory (2 nights)
en:
(:cellnr:)Meals and logding -Tenerife observatory (2 nights)
Ligne 212 modifiée:
(:cellnr align='center':)Car location - La Palma observations (~20 nights)
en:
(:cellnr:)Car location - La Palma observations (~20 nights)
Ligne 217 modifiée:
(:cellnr align='center':)Lodging - La Palma observations (~20 nights)
en:
(:cellnr:)Lodging - La Palma observations (~20 nights)
Ligne 222 modifiée:
(:cellnr align='center':)Meals - La Palma observations (~20 nights)
en:
(:cellnr:)Meals - La Palma observations (~20 nights)
Ligne 227 modifiée:
(:cellnr align='center':)Meals and logding - La Palma observatory (2 nights)
en:
(:cellnr:)Meals and logding - La Palma observatory (2 nights)
Ligne 232 modifiée:
(:cellnr align='center':)Gas
en:
(:cellnr:)Gas
Ligne 237 modifiée:
(:cellnr align='center':)Inter-island Transport (2 flights)
en:
(:cellnr:)Inter-island Transport (2 flights)
Ligne 242 modifiée:
(:cellnr align='center':)Food and accomodation stipend (6 month)
en:
(:cellnr:)Food and accomodation stipend (6 month)
Ligne 247 modifiée:
(:cellnr align='center':)SAND-3 utilization
en:
(:cellnr:)SAND-3 utilization
Ligne 252 modifiée:
(:cellnr align='center':)Computing time
en:
(:cellnr:)Computing time
Ligne 257 modifiée:
(:cellnr align='center':)Researcher salary
en:
(:cellnr:)Researcher salary
Ligne 262 modifiée:
(:cellnr align='center':)Office w internet connection
en:
(:cellnr:)Office w internet connection
Ligne 267 modifiée:
(:cellnr align='center':)TOTAL
en:
(:cellnr:)TOTAL
Lignes 172-174 modifiées:
(:cellnr:)
(:cell:)Cost
(:cell:)Financing organism \\
en:
(:cellnr align='center':)
(:cell align='center':)Cost
(:cell align='center':)Financing organism \\
Lignes 176-177 modifiées:
(:cell:)Financing organism\\
en:
(:cell align='center':)Financing organism\\
\\
Lignes 179-180 modifiées:
(:cell:)Financing organism\\
en:
(:cell align='center':)Financing organism\\
\\
Lignes 182-271 modifiées:
(:cellnr:)Task/item
(:cell:)
(:cell:)
(:cell:)
(:cell:)
(:cellnr:)International transport
(
:cell:)1000 Euros
(:cell:)
(:cell:)
(:cell:)
(:cellnr:)Car location - Tenerife observations (~20 nights)
(:cell:)1600 Euros
(:cell:)
(:cell:)750
(:cell:)
(:cellnr:)Lodging - Tenerife observations (~20 nights)
(:cell:)2000 Euros
(:cell:)
(:cell:)2000
(:cell:)
(:cellnr:)Meals - Tenerife observations (~20 nights)
(:cell:)850 Euros
(:cell:)
(:cell:)850
(:cell:)
(:cellnr:)Meals and logding -Tenerife observatory (2 nights)
(:cell:)270 Euros
(
:cell:)
(:cell:)
(:cell:)x
(:cellnr:)Car location - La Palma observations (~20 nights)
(:cell:)1600 Euros
(:cell:)
(:cell:)750
(:cell:)
(:cellnr:)Lodging - La Palma observations (~20 nights)
(:cell:)2000 Euros
(:cell:)
(:cell:)2000
(:cell:)
(:cellnr:)Meals - La Palma observations (~20 nights)
(:cell:)850 Euros
(:cell:)
(:cell:)850
(:cell:)
(:cellnr:)Meals and logding - La Palma observatory (2 nights)
(:cell:)270 Euros
(
:cell:)
(:cell:)
(:cell:)x
(:cellnr:)Gas
(:
cell:)800 Euros
(
:cell:)
(:cell:)1000
(:cell:)
(:cellnr:)Inter-island Transport (2 flights)
(:cell:)300 Euros
(
:cell:)
(:cell:)
(:cell:)
(:cellnr:)Food and accomodation stipend (6 month)
(:cell:)6000 Euros
(
:cell:)
(:cell:)
(:cell:)x
(:cellnr:)SAND-3 utilization
(
:cell:)-
(:cell:)x
(:cell:)
(:cell:)
(:cellnr:)Computing time
(
:cell:)-
(:cell:)
(:cell:)x
(:cell:)x
(:cellnr:)Researcher salary
(
:cell:)-
(:cell:)x
(:cell:)x
(:cell:)
(:cellnr:)Office w internet connection
(
:cell:)
(:cell:)
(:cell:)
(:cell:)x
(:cellnr:)TOTAL
(:
cell:)
(:cell:)
(:cell:)
(:cell:)
en:
(:cellnr align='center':)Task/item
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)
(:cellnr align='center':)International transport
(:cell align='center':)1000 Euros
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)
(:cellnr align='center':)Car location - Tenerife observations
(~20 nights)
(:cell align='center':)1600 Euros
(:cell align='center':)
(:cell align='center':)750
(:cell align='center':)
(:cellnr align='center':)Lodging - Tenerife observations
(~20 nights)
(:cell align='center':)2000 Euros
(:cell align='center':)
(:cell align='center':)2000
(:cell align='center':)
(:cellnr align='center':)Meals - Tenerife observations
(~20 nights)
(:cell align='center':)850 Euros
(:cell align='center':)
(:cell align='center':)850
(:cell align='center':)
(:cellnr align='center':)Meals and logding -Tenerife observatory (2
nights)
(:cell align='center':)270 Euros
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)x
(:cellnr align='center':)Car location - La Palma observations
(~20 nights)
(:cell align='center':)1600 Euros
(:cell align='center':)
(:cell align='center':)750
(:cell align='center':)
(:cellnr align='center':)Lodging - La Palma observations
(~20 nights)
(:cell align='center':)2000 Euros
(:cell align='center':)
(:cell align='center':)2000
(:cell align='center':)
(:cellnr align='center':)Meals - La Palma observations
(~20 nights)
(:cell align='center':)850 Euros
(:cell align='center':)
(:cell align='center':)850
(:cell align='center':)
(:cellnr align='center':)Meals and logding - La Palma observatory (2
nights)
(:cell align='center':)270 Euros
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)x
(:cellnr align='center':)Gas
(:cell align='center':)800 Euros
(:cell align='center':)
(:cell align='center':)1000
(:cell align='center':)
(:cellnr align='center':)Inter-island Transport (2 flights)
(:cell align='center':)300 Euros
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)
(:cellnr align='center':)Food and accomodation stipend (6 month)
(:cell align='center':)6000 Euros
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)x
(:cellnr align='center':)SAND-3 utilization
(:cell align='center':)-
(:cell align='center':)x
(:cell align='center':)
(:cell align='center':)
(:cellnr align='center':)Computing time
(:cell align='center':)-
(:cell align='center':)
(:cell align='center':)x
(:cell align='center':)x
(:cellnr align='center':)Researcher salary
(:cell align='center':)-
(:cell align='center':)x
(:cell align='center':)x
(:cell align='center':)
(:cellnr align='center':)Office w internet connection
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)x
(:cellnr align='center':)TOTAL
(:cell align='center':)
(:cell align='center':)
(:cell align='center':)
(:cell align='center'
:)
Ligne 175 modifiée:
CÉGEP de Sherbrooke
en:
CÉGEP & University of Sherbrooke
Ligne 247 ajoutée:
(:cell:)x
Ligne 248 supprimée:
(:cell:)x
Ligne 254 modifiée:
(:cell:)
en:
(:cell:)x
Ligne 256 supprimée:
(:cell:)
Ligne 258 ajoutée:
(:cell:)x
Ligne 260 modifiée:
(:cellnr:)
en:
(:cellnr:)Office w internet connection
Lignes 264-265 ajoutées:
(:cell:)x
(:cellnr:)TOTAL
Ligne 266 supprimée:
(:cellnr:)TOTAL
Ligne 269 supprimée:
(:cell:)
Ligne 209 modifiée:
(:cell:)460 Euros
en:
(:cell:)x
Ligne 229 modifiée:
(:cell:)460 Euros
en:
(:cell:)x
Ligne 241 ajoutée:
(:cell:)6000 Euros
Lignes 244-246 ajoutées:
(:cell:)x
(:cellnr:)SAND-3 utilization
(:cell:)-
Lignes 247-250 supprimées:
(:cell:)6000 Euros
(:cellnr:)SAND-3 utilization
(:cell:)-
(:cell:)
Ligne 256 ajoutée:
(:cell:)-
Ligne 258 ajoutée:
(:cell:)x
Ligne 260 ajoutée:
(:cellnr:)
Ligne 262 supprimée:
(:cellnr:)TOTAL
Ligne 265 ajoutée:
(:cellnr:)TOTAL
Lignes 268-269 ajoutées:
(:cell:)
(:cell:)
Lignes 174-175 modifiées:
(:cell:)
en:
(:cell:)Financing organism \\
CÉGEP de Sherbrooke
Ligne 174 ajoutée:
(:cell:)
Ligne 183 ajoutée:
(:cell:)
Ligne 188 ajoutée:
(:cell:)
Ligne 191 ajoutée:
(:cell:)
Ligne 196 ajoutée:
(:cell:)
Ligne 201 ajoutée:
(:cell:)
Ligne 207 ajoutée:
(:cell:)
Ligne 211 ajoutée:
(:cell:)
Ligne 216 ajoutée:
(:cell:)
Ligne 221 ajoutée:
(:cell:)
Ligne 227 ajoutée:
(:cell:)
Ligne 231 ajoutée:
(:cell:)
Ligne 238 ajoutée:
(:cell:)
Ligne 242 ajoutée:
(:cell:)
Ligne 246 ajoutée:
(:cell:)
Ligne 251 ajoutée:
(:cell:)
Ligne 254 modifiée:
(:cellnr:)
en:
(:cellnr:)Researcher salary
Ligne 258 ajoutée:
(:cell:)
Ligne 263 ajoutée:
(:cell:)
Lignes 231-232 ajoutées:
(:cell:)-
(:cell:)x
Lignes 234-235 ajoutées:
(:cellnr:)Computing time
(:cell:)-
Ligne 230 modifiée:
(:cellnr:)
en:
(:cellnr:)SAND-3 utilization
Ligne 232 ajoutée:
(:cell:)x
Ligne 234 ajoutée:
(:cellnr:)
Ligne 235 supprimée:
(:cellnr:)TOTAL
Ligne 238 ajoutée:
(:cellnr:)TOTAL
Lignes 240-241 ajoutées:
(:cell:)
(:cell:)
Ligne 230 modifiée:
(:cellnr:)TOTAL
en:
(:cellnr:)
Lignes 234-237 ajoutées:
(:cellnr:)TOTAL
(:cell:)
(:cell:)
(:cell:)
Ligne 226 modifiée:
(:cellnr:)
en:
(:cellnr:)Food and accomodation stipend (6 month)
Lignes 229-230 ajoutées:
(:cell:)6000 Euros
(:cellnr:)TOTAL
Ligne 231 supprimée:
(:cellnr:)Food and accomodation stipend (6 month)
Lignes 233-237 supprimées:
(:cell:)6000 Euros
(:cellnr:)TOTAL
(:cell:)
(:cell:)
(:cell:)
Ligne 183 supprimée:
(:cell:)1500
Ligne 185 ajoutée:
(:cell:)
Ligne 226 modifiée:
(:cellnr:)Food and accomodation stipend (6 month)
en:
(:cellnr:)
Lignes 228-229 supprimées:
(:cell:)6000 Euros
(:cellnr:)TOTAL
Ligne 230 ajoutée:
(:cellnr:)Food and accomodation stipend (6 month)
Lignes 233-237 ajoutées:
(:cell:)6000 Euros
(:cellnr:)TOTAL
(:cell:)
(:cell:)
(:cell:)
Ligne 183 ajoutée:
(:cell:)1000 Euros
Ligne 184 supprimée:
(:cell:)1500
Lignes 186-187 modifiées:
(:cellnr:)Car location - Tenerife observations
en:
(:cellnr:)Car location - Tenerife observations (~20 nights)
(:cell:)1600 Euros
Ligne 188 supprimée:
(:cell:)750
Lignes 190-191 modifiées:
(:cellnr:)Lodging - Tenerife observations
en:
(:cellnr:)Lodging - Tenerife observations (~20 nights)
(:cell:)2000 Euros
Ligne 192 supprimée:
(:cell:)2000
Lignes 194-195 modifiées:
(:cellnr:)Meals - Tenerife observations
en:
(:cellnr:)Meals - Tenerife observations (~20 nights)
(:cell:)850 Euros
Ligne 196 supprimée:
(:cell:)850
Ligne 199 modifiée:
(:cell:)420
en:
(:cell:)270 Euros
Lignes 201-202 modifiées:
(:cell:)420
(:cellnr:)Car location - La Palma observations
en:
(:cell:)460 Euros
(:cellnr:)Car location - La Palma observations (~20 nights)
(:cell:)1600 Euros
Ligne 204 supprimée:
(:cell:)750
Lignes 206-207 modifiées:
(:cellnr:)Lodging - La Palma observations
en:
(:cellnr:)Lodging - La Palma observations (~20 nights)
(:cell:)2000 Euros
Ligne 208 supprimée:
(:cell:)2000
Lignes 210-211 modifiées:
(:cellnr:)Meals - La Palma observations
en:
(:cellnr:)Meals - La Palma observations (~20 nights)
(:cell:)850 Euros
Ligne 212 supprimée:
(:cell:)850
Ligne 215 modifiée:
(:cell:)?
en:
(:cell:)270 Euros
Lignes 217-218 modifiées:
(:cell:)420
(:cellnr:)Essence observations
en:
(:cell:)460 Euros
(:cellnr:)Gas
(:cell:)800 Euros
Ligne 220 supprimée:
(:cell:)1000
Lignes 222-224 modifiées:
(:cellnr:)Transport La Palma - Tenerife 2x
(:cell:)400
(:cell:)400
en:
(:cellnr:)Inter-island Transport (2 flights)
(:cell:)300 Euros
Ligne 224 supprimée:
(:cellnr:)Food and accomodation stipend
Ligne 226 ajoutée:
(:cellnr:)Food and accomodation stipend (6 month)
Ligne 228 ajoutée:
(:cell:)
Lignes 231-233 modifiées:
(:cell:)~26000
(:cell:)~10000
(:cell:)~8500
en:
(:cell:)
(:cell:)
(:cell:)
Lignes 229-232 supprimées:
(:cellnr:)Fin de location MPV
(:cell:)
(:cell:)
(:cell:)
Lignes 230-231 modifiées:
(:cellnr:)revenu Location maison \\
St-Camille
en:
(:cellnr:)Fin de location MPV
Lignes 233-236 supprimées:
(:cellnr:)Fin de location MPV
(:cell:)
(:cell:)
(:cell:)
Ligne 186 modifiée:
(:cellnr:)Location minivan observations Tenerife
en:
(:cellnr:)Car location - Tenerife observations
Ligne 190 modifiée:
(:cellnr:)Hébergement observations Tenerife
en:
(:cellnr:)Lodging - Tenerife observations
Ligne 194 modifiée:
(:cellnr:)Perdiemme Tenerife
en:
(:cellnr:)Meals - Tenerife observations
Ligne 198 modifiée:
(:cellnr:)Hébergement et nourriture Tenerife observatoire
en:
(:cellnr:)Meals and logding -Tenerife observatory (2 nights)
Ligne 202 modifiée:
(:cellnr:)Location minivan observations La Palma
en:
(:cellnr:)Car location - La Palma observations
Ligne 206 modifiée:
(:cellnr:)Hébergement observations La Palma
en:
(:cellnr:)Lodging - La Palma observations
Ligne 210 modifiée:
(:cellnr:)Perdiemme La Palma
en:
(:cellnr:)Meals - La Palma observations
Ligne 214 modifiée:
(:cellnr:)Hébergement  et nourriture La Palma observatoire 2 jours
en:
(:cellnr:)Meals and logding - La Palma observatory (2 nights)
Lignes 226-227 modifiées:
(:cellnr:)Hébergement famille - travail
(:cell:)9600
en:
(:cellnr:)Food and accomodation stipend
Lignes 227-228 supprimées:
(:cell:)7700
(:cellnr:)Hébergement famille - autre
Lignes 229-231 ajoutées:
(:cell:)6000 Euros
(:cellnr:)revenu Location maison \\
St-Camille
Lignes 233-234 supprimées:
(:cellnr:)revenu Location maison \\
St-Camille
Ligne 235 ajoutée:
(:cellnr:)Fin de location MPV
Ligne 237 supprimée:
(:cellnr:)Fin de location MPV
Lignes 238-239 supprimées:
(:cell:)
(:cell:)
Lignes 173-178 ajoutées:
(:cell:)Cost
(:cell:)Financing organism\\
FQRNT
(:cell:)Financing organism\\
IAC
(:cellnr:)Task/item
Lignes 182-187 modifiées:
(:cellnr:)Task
(:cell:)Coût
(:cell:)Financement\\
FQRNT
(:cell:)Financement IAC
(:cellnr:)Transport international Martin
en:
(:cellnr:)International transport
Lignes 185-188 supprimées:
(:cellnr:)Transport international famille
(:cell:)6000
(:cell:)
(:cell:)IAC?
Lignes 176-178 modifiées:
(:cell:)
(:cellnr:)Tâche
(:cell:)Durée
en:
(:cellnr:)Task
Ligne 181 supprimée:
(:cell:)-
Ligne 185 supprimée:
(:cell:)-
Ligne 189 supprimée:
(:cell:)15 jours
Ligne 193 supprimée:
(:cell:)13 jours
Ligne 197 supprimée:
(:cell:)13 jours
Ligne 201 supprimée:
(:cell:)2 jours
Ligne 205 supprimée:
(:cell:)15 jours
Ligne 209 supprimée:
(:cell:)13 jours
Ligne 213 supprimée:
(:cell:)13 jours
Ligne 217 supprimée:
(:cell:)2 jours
Ligne 221 supprimée:
(:cell:)30 jours
Ligne 225 supprimée:
(:cell:)-
Ligne 229 supprimée:
(:cell:)180 jours
Ligne 236 supprimée:
(:cell:)
Ligne 238 supprimée:
(:cell:)360 jours
Ligne 242 supprimée:
(:cell:)360 jours
Ligne 246 supprimée:
(:cell:)
Lignes 172-176 ajoutées:
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Ligne 177 supprimée:
(:cell:)Economie durant le séjour
Ligne 182 supprimée:
(:cell:)
Ligne 187 supprimée:
(:cell:)
Ligne 192 supprimée:
(:cell:)
Ligne 197 supprimée:
(:cell:)
Ligne 202 supprimée:
(:cell:)
Ligne 207 supprimée:
(:cell:)
Ligne 212 supprimée:
(:cell:)
Ligne 217 supprimée:
(:cell:)
Ligne 222 supprimée:
(:cell:)
Ligne 227 supprimée:
(:cell:)
Ligne 232 supprimée:
(:cell:)
Ligne 237 supprimée:
(:cell:)
Ligne 243 ajoutée:
(:cellnr:)Hébergement famille - autre
Ligne 244 supprimée:
(:cellnr:)Hébergement famille - autre
Lignes 247-248 supprimées:
(:cell:)
(:cell:)
Ligne 253 supprimée:
(:cell:)9000
Ligne 258 supprimée:
(:cell:)5000
Ligne 263 supprimée:
(:cell:)~14000
Lignes 170-283 ajoutées:
!!Budget
(:table border='1' width='80%':)
(:cellnr:)Tâche
(:cell:)Durée
(:cell:)Coût
(:cell:)Financement\\
FQRNT
(:cell:)Financement IAC
(:cell:)Economie durant le séjour
(:cellnr:)Transport international Martin
(:cell:)-
(:cell:)1500
(:cell:)1500
(:cell:)
(:cell:)
(:cellnr:)Transport international famille
(:cell:)-
(:cell:)6000
(:cell:)
(:cell:)IAC?
(:cell:)
(:cellnr:)Location minivan observations Tenerife
(:cell:)15 jours
(:cell:)750
(:cell:)750
(:cell:)
(:cell:)
(:cellnr:)Hébergement observations Tenerife
(:cell:)13 jours
(:cell:)2000
(:cell:)2000
(:cell:)
(:cell:)
(:cellnr:)Perdiemme Tenerife
(:cell:)13 jours
(:cell:)850
(:cell:)850
(:cell:)
(:cell:)
(:cellnr:)Hébergement et nourriture Tenerife observatoire
(:cell:)2 jours
(:cell:)420
(:cell:)
(:cell:)420
(:cell:)
(:cellnr:)Location minivan observations La Palma
(:cell:)15 jours
(:cell:)750
(:cell:)750
(:cell:)
(:cell:)
(:cellnr:)Hébergement observations La Palma
(:cell:)13 jours
(:cell:)2000
(:cell:)2000
(:cell:)
(:cell:)
(:cellnr:)Perdiemme La Palma
(:cell:)13 jours
(:cell:)850
(:cell:)850
(:cell:)
(:cell:)
(:cellnr:)Hébergement  et nourriture La Palma observatoire 2 jours
(:cell:)2 jours
(:cell:)?
(:cell:)
(:cell:)420
(:cell:)
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000
(:cell:)1000
(:cell:)
(:cell:)
(:cellnr:)Transport La Palma - Tenerife 2x
(:cell:)-
(:cell:)400
(:cell:)400
(:cell:)
(:cell:)
(:cellnr:)Hébergement famille - travail
(:cell:)180 jours
(:cell:)9600
(:cell:)
(:cell:)7700
(:cell:)
(:cellnr:)Hébergement famille - autre
(:cell:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
(:cellnr:)revenu Location maison \\
St-Camille
(:cell:)360 jours
(:cell:)
(:cell:)
(:cell:)
(:cell:)9000
(:cellnr:)Fin de location MPV
(:cell:)360 jours
(:cell:)
(:cell:)
(:cell:)
(:cell:)5000
(:cellnr:)TOTAL
(:cell:)
(:cell:)~26000
(:cell:)~10000
(:cell:)~8500
(:cell:)~14000
(:tableend:)

Lignes 160-167 modifiées:
September 2009 - Beginning of the project
September - October 2009 - Sky spectral luminance sampling experiment across Tenerife and La Palma
November 2009 - Preparation of the model input dataset
December 2009 - Model calibration and estimation of errors
January 2010 - Subsectors modeling experiments
Febuary 2010 - Final report and/or publication writing

en:
*September 2009 - Beginning of the project
*September - October 2009 - Sky spectral luminance sampling experiment across Tenerife and La Palma
*November 2009 - Preparation of the model input dataset
*December 2009 - Model calibration and estimation of errors
*January 2010 - Subsectors modeling experiments
*Febuary 2010 - Final report and/or publication writing

Lignes 158-167 ajoutées:
The projet will take place over a six month period. Major project milestones along with estimated associated time are listed below .

September 2009 - Beginning of the project
September - October 2009 - Sky spectral luminance sampling experiment across Tenerife and La Palma
November 2009 - Preparation of the model input dataset
December 2009 - Model calibration and estimation of errors
January 2010 - Subsectors modeling experiments
Febuary 2010 - Final report and/or publication writing

Lignes 140-141 modifiées:
Assessing the relative contribution from Tenerife and La Palma island sectors to artificial sky spectral luminance levels at European Northern Observatory sites.
en:
Assessing the relative contribution from Tenerife and La Palma islands sectors to artificial sky spectral luminance levels at European Northern Observatory sites.
Lignes 156-160 ajoutées:
!!!Time table

!!!Budget requirements estimation

!!!References
Lignes 144-145 modifiées:
We suggest to use a third generation gridded sky luminance model which account for heterogeneous distribution of light fixtures, ground reflectance and topography along with hyperspectral sky luminance measurements to infer the relavite contribution of Tenerife and La Palma islands subsectors at astronomical observation sites. This sensitive study will allow the quantization of sensitive sectors. In term help to identify sectors at which any ligthing level increase or decrease may have a larger impact on light pollution level at .
en:
We suggest to use a third generation gridded sky luminance model which account for heterogeneous distribution of light fixtures, ground reflectance and topography along with hyperspectral sky luminance measurements to infer the relavite contribution of Tenerife and La Palma islands subsectors at astronomical observation sites. This sensitive study will allow the quantization of sensitive sectors. In term help to identify sectors at which any ligthing level increase or decrease may have a larger impact on light pollution levels at both European Northern Observatory sites.
Lignes 142-145 modifiées:
!!!Description

We suggest to use a third generation gridded sky luminance model which account for heterogeneous distribution of light fixtures, ground reflectance and topography along with hyperspectral sky luminance measurements to infer the relavite contribution of Tenerife and La Palma islands subsectors at observation sites. This sensitive study will allow the quantization of the most sensitive zone and in term help to identify sectors at which any ligthing level increase may have a larger impact on light pollution.
en:
!!!Summary

We suggest to use a third generation gridded sky luminance model which account for heterogeneous distribution of light fixtures, ground reflectance and topography along with hyperspectral sky luminance measurements to infer the relavite contribution of Tenerife and La Palma islands subsectors at astronomical observation sites. This sensitive study will allow the quantization of sensitive sectors. In term help to identify sectors at which any ligthing level increase or decrease may have a larger impact on light pollution level at .
Lignes 148-151 modifiées:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the sky brightness levels. This field campaign should involve the acquisition of around 40 sampling sites. The sites will be randomly choosen (except for the observatories sites) in order to cover uniformly and without bias the geographical domains. For each of these observing sites, measurement should me made toward zenith and toward/backward main cities at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the prediction of a gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which wich will be used to accomplish this task is a the third version of the SAND spectrometre (Spectrometre for Aerosol Night Detection) designed by our group. The spectrometer will be calibrated prior to the experiment in the Centre d'Application et de Recherche en TÉLédétection (CARTEL) at University of Sherbrooke, Canada. I am a associate researcher of that remote sensing research centre. The field campaign may require about 2 month depending on clear sky conditions.

The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé et al. ). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
en:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the sky brightness levels. This field campaign should involve the acquisition of around 40 sampling sites. The sites will be randomly choosen (except for the observatories sites) in order to cover uniformly and without bias the geographical domains. For each of these observing sites, measurement should me made toward zenith and toward/backward main cities at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the prediction of a gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which wich will be used to accomplish this task is a the third version of the Spectrometre for Aerosol Night Detection (SAND) designed by our group. The spectrometer will be calibrated prior to the experiment in the Centre d'Application et de Recherche en TÉLédétection (CARTEL) at University of Sherbrooke, Canada. I am a associate researcher of that remote sensing research centre. The field campaign may require about 2 month depending on clear sky conditions.

The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé ''et al.'' 2005, Aubé 2007). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker 1977) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang 1986) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.
Lignes 152-155 modifiées:
en:
The third step is to run the model with the complete input dataset and compare model results with the first half of sky luminance measurements. As stated earlier this step aimed to calibrate the model in order to fit observations. Then the second half of measurements will be used to map typical model errors.

Finally the islands geographical domain will be subdivised in sectors and then only one sector at a time will be "light on". The goal of that experiment is to determine the relative contribution of each sectors to the sky luminance at each observation sites so that ones should be able to infer the impact of localised change in lighting device inventory. That kind of results will be extremely usefull to identify critical zones and then orient any future intervention/abatement. It may be used as a high level decision tool by local decision makers (IAC or others).

Lignes 150-152 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé et al. ). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from

en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé et al. ). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from active sunphotometer of NASA GSFC AERONET network placed on Tenerife island.

Lignes 150-152 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé et al. ). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, ground elevation model, ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from

en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé et al. ). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements explicit 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, digital elevation model (DEM), ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from remotely sensed ground cover models in combination with ASTER spectral reflectance database. Atmospheric pressure data will be taken from nearest meteological station and aerosol optical properties from

Lignes 150-151 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé et al. ). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, ground elevation model, ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient.
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé et al. ). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, ground elevation model, ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient. Light type and intensity may be either obtained from local inventories or estimated from population density data and some in-situ sampling. Ground spectral reflectance will be obtained from

Lignes 150-151 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé et al. ). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms.
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé et al. ). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms. To perform a modeling experiment, we have to feed the model with gridded dataset of light types and intensity distribution, ground elevation model, ground spectral reflectance, typical mean light free path toward the ground and typical obstacles height, ground atmospheric pressure, aerosol optical depth and angstrom coefficient.
Lignes 150-151 modifiées:
The second step of the project will be to acquire input database required to run the ILLUMINA model. ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground
en:
The second step of the project will be to acquire input database required to run the ILLUMINA model (Aubé et al. ). ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground and ground homogeneity. They also assume some empirical parametrization of atmospheric transfer process and light output angular pattern. Improvements of ILLUMINA model reside in the capacity to model any heterogeneous distribution of a variety of light fixture with their own intensities spectral dependances and angular light output pattern. The model may also account for shadowing effects of topography, gridded variation in ground reflectance and subgrid obstacles. Finally our model implements 1st and 2nd order scattering from aerosols and molecules and consider the vertical profile of atmospheric constituants. ILLUMINA account also for the size distribution and composition of aerosol content which may be quite usefull in cas of pollution events like forest fires or subsaharian sand storms.
Lignes 148-149 modifiées:
As a first step, a measurement campaign will be made across the islands in order to get a relavively good spatial sampling of the sky brightness levels. This field campaign should involve at least
en:
As a first step, a measurement campaign will be made across the Tenerife and La Palma islands in order to get a relavively good spatial sampling of the sky brightness levels. This field campaign should involve the acquisition of around 40 sampling sites. The sites will be randomly choosen (except for the observatories sites) in order to cover uniformly and without bias the geographical domains. For each of these observing sites, measurement should me made toward zenith and toward/backward main cities at 75 deg. from zenith. Half of that dataset will be used as tie down points to calibrate the prediction of a gridded light pollution model. The second half will be used later to evaluate model errors. The instrument which wich will be used to accomplish this task is a the third version of the SAND spectrometre (Spectrometre for Aerosol Night Detection) designed by our group. The spectrometer will be calibrated prior to the experiment in the Centre d'Application et de Recherche en TÉLédétection (CARTEL) at University of Sherbrooke, Canada. I am a associate researcher of that remote sensing research centre. The field campaign may require about 2 month depending on clear sky conditions.

The second step of the project will be to acquire input database required to run the ILLUMINA model. ILLUMINA may be described as a third generation light pollution model. First generation models (e.g. Walker) mainly address the sky brightness to distance relationship. Second generation models (e.g. Garstang) implements some mulitangular dependance and atmospheric properties but relies on some basic assumptions about the geometry of light distribution on the ground

Lignes 140-141 modifiées:
Using an third generation gridded sky luminance model and spectral sky measurements to infer the relative contribution from Tenerife and La Palma island sectors to sky luminance levels.
en:
Assessing the relative contribution from Tenerife and La Palma island sectors to artificial sky spectral luminance levels at European Northern Observatory sites.

!!!Description

We suggest
to use a third generation gridded sky luminance model which account for heterogeneous distribution of light fixtures, ground reflectance and topography along with hyperspectral sky luminance measurements to infer the relavite contribution of Tenerife and La Palma islands subsectors at observation sites. This sensitive study will allow the quantization of the most sensitive zone and in term help to identify sectors at which any ligthing level increase may have a larger impact on light pollution.

!!!Methodology

As a first step, a measurement campaign will be made across the islands in order to get a relavively good spatial sampling of the sky brightness levels. This field campaign should involve at least

Lignes 136-144 modifiées:
----
en:
!!Devis de projet

!!!Title

Using an third generation gridded sky luminance model and spectral sky measurements to infer the relative contribution from Tenerife and La Palma island sectors to sky luminance levels.

!!!

----
Lignes 134-136 modifiées:
*http://www.iac.es/site-testing/index.php?option=com_content&task=view&id=51&Itemid=26
en:
*http://www.iac.es/site-testing/index.php?option=com_content&task=view&id=51&Itemid=26

----
Ligne 9 ajoutée:
!!Budget
Lignes 1-2 ajoutées:
(:toc:)
Lignes 128-131 modifiées:
*http://www.iac.es/site-testing/
en:
*http://www.iac.es/site-testing/
*http://www.iac.es/servicios.php?op1=28&op2=69&lang=en
*http://magic.mppmu.mpg.de/publications/articles/LONS.ps.gz
*http://www.iac.es/site-testing/index.php?option=com_content&task=view&id=51&Itemid=26
Lignes 125-128 ajoutées:
*http://www.starlight2007.net/pdf/proceedings/Pedani.pdf
*http://www.starlight2007.net/pdf/proceedings/F_delaPaz.pdf
*http://www.starlight2007.net/pdf/proceedings/Javier_DiazCastro.pdf
*http://www.iac.es/site-testing/
Ligne 122 modifiée:
*
en:
*http://www.ing.iac.es/Astronomy/observing/conditions/skybr/skybr.html#lpol
Ligne 124 ajoutée:
*http://www.iac.es/proyecto/otpc/pollu.htm
Lignes 119-123 ajoutées:

!!Références sur la pollution lumineuse à La Palma et Tenerife

*
*http://www.ing.iac.es/PR/newsletter/news9/ins2.html
Ligne 91 modifiée:
(:cell:)7600
en:
(:cell:)7700
Lignes 17-18 modifiées:
(:cell:)1200
(:cell:)1200
en:
(:cell:)1500
(:cell:)1500
Ligne 23 modifiée:
(:cell:)5000
en:
(:cell:)6000
Lignes 83-84 modifiées:
(:cell:)300
(:cell:)300
en:
(:cell:)400
(:cell:)400
Ligne 114 modifiée:
(:cell:)~34000
en:
(:cell:)~26000
Lignes 93-94 supprimées:
(:cell:)180 jours
(:cell:)9600
Lignes 97-98 ajoutées:
(:cell:)
(:cell:)
Lignes 5-6 modifiées:
en:
* endate du 10 avril 2008 il me reste un solde de 12500$ et 14k$ sont a venir. Il faut enlever 7k$ pour la 2e annee de maitrise a jd donc 19500 moins le spectrometre et eventuellement un ccd (4000$) ce qui laisse 15500$. En principe je peux utiliser 10k$ pour tenerife. Je vais proposer a Nicolas le 5000$ pour un portable si besoin est.
Ligne 13 modifiée:
(:cell:)Moi
en:
(:cell:)Economie durant le séjour
Lignes 28-29 modifiées:
(:cell:)1000?
(:cell:)1000
en:
(:cell:)750
(:cell:)750
Lignes 52-53 modifiées:
(:cell:)1000?
(:cell:)1000
en:
(:cell:)750
(:cell:)750
Ligne 9 supprimée:
(:cell:)
Ligne 17 ajoutée:
(:cell:)1200
Ligne 18 supprimée:
(:cell:)1200
Ligne 19 supprimée:
(:cell:)
Ligne 24 ajoutée:
(:cell:)IAC?
Lignes 25-26 supprimées:
(:cell:)IAC?
(:cell:)
Ligne 29 ajoutée:
(:cell:)1000
Ligne 30 supprimée:
(:cell:)1000
Ligne 31 supprimée:
(:cell:)
Ligne 35 ajoutée:
(:cell:)2000
Ligne 36 supprimée:
(:cell:)2000
Ligne 37 supprimée:
(:cell:)
Ligne 41 ajoutée:
(:cell:)850
Ligne 42 supprimée:
(:cell:)850
Ligne 43 supprimée:
(:cell:)
Ligne 48 ajoutée:
(:cell:)420
Lignes 49-50 supprimées:
(:cell:)420
(:cell:)
Ligne 53 ajoutée:
(:cell:)1000
Ligne 54 supprimée:
(:cell:)1000
Ligne 55 supprimée:
(:cell:)
Ligne 59 ajoutée:
(:cell:)2000
Ligne 60 supprimée:
(:cell:)2000
Ligne 61 supprimée:
(:cell:)
Ligne 65 ajoutée:
(:cell:)850
Ligne 66 supprimée:
(:cell:)850
Ligne 67 supprimée:
(:cell:)
Ligne 72 ajoutée:
(:cell:)420
Lignes 73-74 supprimées:
(:cell:)420
(:cell:)
Ligne 77 ajoutée:
(:cell:)1000
Ligne 78 supprimée:
(:cell:)1000
Ligne 79 supprimée:
(:cell:)
Ligne 83 ajoutée:
(:cell:)300
Ligne 84 supprimée:
(:cell:)300
Ligne 85 supprimée:
(:cell:)
Ligne 90 ajoutée:
(:cell:)7600
Lignes 91-92 supprimées:
(:cell:)7600
(:cell:)
Ligne 97 supprimée:
(:cell:)
Ligne 103 supprimée:
(:cell:)
Ligne 109 supprimée:
(:cell:)
Ligne 113 supprimée:
(:cell:)
Ligne 122 ajoutée:
(:cell:)360 jours
Ligne 126 supprimée:
(:cell:)
Ligne 130 modifiée:
(:cell:)~24000
en:
(:cell:)~34000
Ligne 101 modifiée:
(:cell:)8700
en:
(:cell:)9600
Ligne 108 modifiée:
(:cell:)8700
en:
(:cell:)9600
Lignes 133-134 modifiées:
(:cell:)
(:cell:)
en:
(:cell:)~8500
(:cell:)~14000
Ligne 121 modifiée:
(:cellnr:)
en:
(:cellnr:)Fin de location MPV
Lignes 127-128 ajoutées:
(:cell:)5000
(:cellnr:)TOTAL
Lignes 129-130 supprimées:
(:cellnr:)TOTAL
(:cell:)
Ligne 14 modifiée:
(:cell:)
en:
(:cell:)Moi
Lignes 113-115 modifiées:
(:cellnr:)revenu Location maison
(:cell:)180 jours
(:cell:)%red%4500
en:
(:cellnr:)revenu Location maison \\
St-Camille
(:cell:)360 jours
Lignes 120-121 modifiées:
(:cellnr:)TOTAL
en:
(:cell:)9000
(:cellnr:)
Ligne 122 supprimée:
(:cell:)~24000
Ligne 123 supprimée:
(:cell:)~10000
Lignes 126-134 ajoutées:
(:cell:)
(:cell:)
(:cellnr:)TOTAL
(:cell:)
(:cell:)~24000
(:cell:)
(:cell:)~10000
(:cell:)
(:cell:)
Ligne 14 ajoutée:
(:cell:)
Ligne 21 ajoutée:
(:cell:)
Ligne 28 ajoutée:
(:cell:)
Ligne 35 ajoutée:
(:cell:)
Ligne 42 ajoutée:
(:cell:)
Ligne 49 ajoutée:
(:cell:)
Ligne 56 ajoutée:
(:cell:)
Ligne 63 ajoutée:
(:cell:)
Ligne 70 ajoutée:
(:cell:)
Ligne 77 ajoutée:
(:cell:)
Ligne 84 ajoutée:
(:cell:)
Ligne 91 ajoutée:
(:cell:)
Ligne 98 ajoutée:
(:cell:)
Ligne 104 supprimée:
(:cellnr:)
Lignes 106-108 ajoutées:
(:cellnr:)Hébergement famille - autre
(:cell:)180 jours
(:cell:)8700
Ligne 119 ajoutée:
(:cell:)
Ligne 126 ajoutée:
(:cell:)
Ligne 86 modifiée:
(:cellnr:)Hébergement famille
en:
(:cellnr:)Hébergement famille - travail
Lignes 92-94 modifiées:
(:cellnr:)revenu Location maison
(:cell:)180 jours
(:cell:)%red%4500
en:
(:cellnr:)
Ligne 95 supprimée:
(:cellnr:)TOTAL
Ligne 96 supprimée:
(:cell:)~24000
Lignes 98-100 modifiées:
(:cell:)~10000
en:
(:cellnr:)revenu Location maison
(:cell:)180 jours
(:cell:)%red%4500
Lignes 102-109 ajoutées:
(:cell:)
(:cell:)
(:cellnr:)TOTAL
(:cell:)
(:cell:)~24000
(:cell:)
(:cell:)~10000
(:cell:)
Lignes 92-94 modifiées:
(:cellnr:)
en:
(:cellnr:)revenu Location maison
(:cell:)180 jours
(:cell:)%red%4500
Ligne 98 ajoutée:
(:cellnr:)TOTAL
Ligne 100 ajoutée:
(:cell:)~24000
Ligne 102 modifiée:
(:cellnr:)TOTAL
en:
(:cell:)~10000
Lignes 103-106 supprimées:
(:cell:)~24000
(:cell:)
(:cell:)~10000
(:cell:)
Lignes 4-5 modifiées:
en:
*Possibilité de compléter avec la conception des outils pour CélesTech (~20000$)
Lignes 3-4 ajoutées:
*Proposition d'un projet sur 3 mois TC mais réparti sur 6 mois à demi temps.
Lignes 12-13 supprimées:
(:cell:)1200$
(:cell:)
Lignes 15-16 ajoutées:
(:cell:)1200
(:cell:)
Ligne 19 modifiée:
(:cell:)5000$
en:
(:cell:)5000
Ligne 25 modifiée:
(:cell:)1000$?
en:
(:cell:)1000?
Lignes 30-31 supprimées:
(:cell:)2000$
(:cell:)
Lignes 33-34 ajoutées:
(:cell:)2000
(:cell:)
Lignes 36-37 supprimées:
(:cell:)850$
(:cell:)
Lignes 39-40 ajoutées:
(:cell:)850
(:cell:)
Ligne 43 modifiée:
(:cell:)?
en:
(:cell:)420
Ligne 49 modifiée:
(:cell:)1000$?
en:
(:cell:)1000?
Lignes 54-55 supprimées:
(:cell:)2000$
(:cell:)
Lignes 57-58 ajoutées:
(:cell:)2000
(:cell:)
Lignes 60-61 supprimées:
(:cell:)850$
(:cell:)
Lignes 63-64 ajoutées:
(:cell:)850
(:cell:)
Lignes 72-73 supprimées:
(:cell:)1000$
(:cell:)
Lignes 75-76 ajoutées:
(:cell:)1000
(:cell:)
Lignes 78-79 supprimées:
(:cell:)300$
(:cell:)
Lignes 81-83 modifiées:
(:cellnr:)Allocation subsistance
(:cell:)120 jours
(:cell:)5200$
en:
(:cell:)300
Lignes 83-85 ajoutées:
(:cellnr:)Hébergement famille
(:cell:)180 jours
(:cell:)8700
Lignes 86-87 supprimées:
(:cell:)5200
(:cellnr:)
Lignes 88-89 ajoutées:
(:cell:)7600
(:cellnr:)
Ligne 94 ajoutée:
(:cell:)
Ligne 97 modifiée:
(:cell:)~21000
en:
(:cell:)~24000
Ligne 89 modifiée:
(:cellnr:)TOTAL
en:
(:cellnr:)
Ligne 90 supprimée:
(:cell:)~21000
Ligne 91 supprimée:
(:cell:)~10000
Lignes 93-100 ajoutées:
(:cell:)
(:cell:)
(:cellnr:)TOTAL
(:cell:)
(:cell:)~21000
(:cell:)
(:cell:)~10000
(:cell:)
Ligne 91 ajoutée:
(:cell:)~21000
Ligne 93 ajoutée:
(:cell:)~10000
Lignes 94-95 supprimées:
(:cell:)~10000
(:cell:)
Ligne 46 modifiée:
(:cell:)IAC
en:
(:cell:)420
Ligne 70 modifiée:
(:cell:)IAC
en:
(:cell:)420
Ligne 89 modifiée:
(:cellnr:)
en:
(:cellnr:)TOTAL
Ligne 93 ajoutée:
(:cell:)~10000
Ligne 94 supprimée:
(:cell:)
Ligne 10 modifiée:
(:cell:)
en:
(:cell:)Financement IAC
Ligne 15 modifiée:
(:cell:)1200$ FQRNT?
en:
(:cell:)1200
Ligne 21 ajoutée:
(:cell:)
Ligne 22 supprimée:
(:cell:)
Ligne 27 modifiée:
(:cell:)1000$ FQRNT
en:
(:cell:)1000
Ligne 33 modifiée:
(:cell:)2000$ FQRNT
en:
(:cell:)2000
Ligne 39 modifiée:
(:cell:)850$ FQRNT
en:
(:cell:)850
Ligne 45 ajoutée:
(:cell:)
Ligne 46 supprimée:
(:cell:)
Ligne 51 modifiée:
(:cell:)1000$ FQRNT
en:
(:cell:)1000
Ligne 57 modifiée:
(:cell:)2000$ FQRNT
en:
(:cell:)2000
Ligne 63 modifiée:
(:cell:)850$ FQRNT
en:
(:cell:)850
Ligne 69 ajoutée:
(:cell:)
Ligne 70 supprimée:
(:cell:)
Ligne 75 modifiée:
(:cell:)1000$ FQRNT
en:
(:cell:)1000
Ligne 81 modifiée:
(:cell:)300$ FQRNT
en:
(:cell:)300
Ligne 86 supprimée:
(:cell:)5200$ IAC
Lignes 88-94 ajoutées:
(:cell:)5200
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Lignes 8-10 modifiées:
(:cell:)Financement
en:
(:cell:)Financement\\
FQRNT
(:cell:)
Ligne 16 ajoutée:
(:cell:)
Ligne 22 ajoutée:
(:cell:)
Ligne 28 ajoutée:
(:cell:)
Ligne 34 ajoutée:
(:cell:)
Ligne 40 ajoutée:
(:cell:)
Ligne 46 ajoutée:
(:cell:)
Ligne 52 ajoutée:
(:cell:)
Ligne 58 ajoutée:
(:cell:)
Ligne 64 ajoutée:
(:cell:)
Ligne 70 ajoutée:
(:cell:)
Ligne 76 ajoutée:
(:cell:)
Ligne 82 ajoutée:
(:cell:)
Ligne 88 ajoutée:
(:cell:)
Lignes 69-71 modifiées:
(:cellnr:)
en:
(:cellnr:)Allocation subsistance
(:cell:)120 jours
(:cell:)5200$
Lignes 73-75 modifiées:
(:cell:)
(:cell:)
(:cell:)
en:
(:cell:)5200$ IAC
Ligne 18 modifiée:
(:cell:)
en:
(:cell:)IAC?
Lignes 69-73 ajoutées:
(:cellnr:)
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Lignes 49-51 modifiées:
(:cellnr:)
en:
(:cellnr:)Perdiemme La Palma
(:cell:)13 jours
(:cell:)850$
Lignes 53-56 ajoutées:
(:cell:)850$ FQRNT
(:cellnr:)Hébergement  et nourriture La Palma observatoire 2 jours
(:cell:)2 jours
(:cell:)?
Lignes 58-61 ajoutées:
(:cell:)IAC
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000$
Lignes 63-66 ajoutées:
(:cell:)1000$ FQRNT
(:cellnr:)Transport La Palma - Tenerife 2x
(:cell:)-
(:cell:)300$
Lignes 68-82 modifiées:
(:cellnr:)Hébergement  et nourriture La Palma observatoire 2 jours
(:cell:)2 jours
(:cell:)?
(:cell:)
(:cell:)IAC
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000$
(:cell:)
(:cell:)1000$ FQRNT
(:cellnr:)Transport La Palma - Tenerife
(:cell:)
(:cell:)
(:cell:)
(:cell:)
en:
(:cell:)300$ FQRNT
Ligne 26 ajoutée:
(:cell:)2000$
Ligne 27 supprimée:
(:cell:)
Lignes 29-31 modifiées:
(:cellnr:)
en:
(:cellnr:)Perdiemme Tenerife
(:cell:)13 jours
(:cell:)850$
Lignes 33-36 ajoutées:
(:cell:)850$ FQRNT
(:cellnr:)Hébergement et nourriture Tenerife observatoire
(:cell:)2 jours
(:cell:)?
Lignes 38-41 ajoutées:
(:cell:)IAC
(:cellnr:)Location minivan observations La Palma
(:cell:)15 jours
(:cell:)1000$?
Lignes 43-46 ajoutées:
(:cell:)1000$ FQRNT
(:cellnr:)Hébergement observations La Palma
(:cell:)13 jours
(:cell:)2000$
Lignes 48-49 modifiées:
(:cellnr:)Hébergement et nourriture Tenerife observatoire
(:cell:)2 jours
en:
(:cell:)2000$ FQRNT
(:cellnr:)
Lignes 51-54 supprimées:
(:cell:)IAC
(:cellnr:)Location minivan observations La Palma
(:cell:)15 jours
(:cell:)1000$?
Lignes 52-55 supprimées:
(:cell:)1000$ FQRNT
(:cellnr:)Hébergement et nourriture observations La Palma
(:cell:)13 jours
(:cell:)2000$
Lignes 54-55 modifiées:
(:cell:)2000$ FQRNT
(:cellnr:)Hébergement
La Palma observatoire 2 jours
en:
(:cellnr:)Hébergement  et nourriture La Palma observatoire 2 jours
Ligne 56 ajoutée:
(:cell:)?
Ligne 57 supprimée:
(:cell:)
Lignes 34-38 ajoutées:
(:cellnr:)Hébergement et nourriture Tenerife observatoire
(:cell:)2 jours
(:cell:)
(:cell:)
(:cell:)IAC
Ligne 44 modifiée:
(:cellnr:)Hébergement La Palma
en:
(:cellnr:)Hébergement et nourriture observations La Palma
Ligne 53 modifiée:
(:cell:)
en:
(:cell:)IAC
Lignes 24-25 modifiées:
(:cellnr:)
en:
(:cellnr:)Hébergement observations Tenerife
(:cell:)13 jours
Lignes 28-29 ajoutées:
(:cell:)2000$ FQRNT
(:cellnr:)
Lignes 32-33 ajoutées:
(:cell:)
(:cell:)
Ligne 19 modifiée:
(:cellnr:)Location minivan observations Tenerife 15 jours
en:
(:cellnr:)Location minivan observations Tenerife
Lignes 29-30 modifiées:
(:cellnr:)Hébergement La Palma 13 jours
(:cell:)13 jours
en:
(:cellnr:)Location minivan observations La Palma
(:cell:)15 jours
Lignes 34-36 modifiées:
(:cellnr:)Hébergement La Palma observatoire 2 jours
en:
(:cellnr:)Hébergement La Palma
(:cell:)13 jours
(:cell:)2000$
Lignes 38-40 ajoutées:
(:cell:)2000$ FQRNT
(:cellnr:)Hébergement La Palma observatoire 2 jours
(:cell:)2 jours
Lignes 24-26 modifiées:
(:cellnr:)Hébergement La Palma 15 jours
(:cell:)15 jours
(:cell:)1000$?
en:
(:cellnr:)
Lignes 25-26 supprimées:
(:cell:)1000$ FQRNT
(:cellnr:)
Lignes 29-31 ajoutées:
(:cellnr:)Hébergement La Palma 13 jours
(:cell:)13 jours
(:cell:)1000$?
Lignes 32-35 supprimées:
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000$
(:cell:)
Ligne 34 modifiée:
(:cellnr:)Transport La Palma - Tenerife
en:
(:cellnr:)Hébergement La Palma observatoire 2 jours
Lignes 39-48 ajoutées:
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000$
(:cell:)
(:cell:)1000$ FQRNT
(:cellnr:)Transport La Palma - Tenerife
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Lignes 29-31 modifiées:
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000$
en:
(:cellnr:)
Lignes 30-31 supprimées:
(:cell:)1000$ FQRNT
(:cellnr:)Transport La Palma - Tenerife
Lignes 34-36 ajoutées:
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000$
Lignes 38-43 ajoutées:
(:cell:)1000$ FQRNT
(:cellnr:)Transport La Palma - Tenerife
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Lignes 24-26 modifiées:
(:cellnr:)
en:
(:cellnr:)Hébergement La Palma 15 jours
(:cell:)15 jours
(:cell:)1000$?
Lignes 28-31 ajoutées:
(:cell:)1000$ FQRNT
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000$
Lignes 33-34 ajoutées:
(:cell:)1000$ FQRNT
(:cellnr:)Transport La Palma - Tenerife
Lignes 36-38 supprimées:
(:cellnr:)Hébergement La Palma 15 jours
(:cell:)15 jours
(:cell:)1000$?
Lignes 37-40 supprimées:
(:cell:)1000$ FQRNT
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000$
Lignes 38-43 supprimées:
(:cell:)1000$ FQRNT
(:cellnr:)Transport La Palma - Tenerife
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Lignes 24-26 modifiées:
(:cellnr:)Hébergement La Palma 15 jours
(:cell:)15 jours
(:cell:)1000$?
en:
(:cellnr:)
Lignes 25-28 supprimées:
(:cell:)1000$ FQRNT
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000$
Lignes 26-27 supprimées:
(:cell:)1000$ FQRNT
(:cellnr:)Transport La Palma - Tenerife
Lignes 29-31 ajoutées:
(:cellnr:)Hébergement La Palma 15 jours
(:cell:)15 jours
(:cell:)1000$?
Lignes 33-36 ajoutées:
(:cell:)1000$ FQRNT
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000$
Lignes 38-43 ajoutées:
(:cell:)1000$ FQRNT
(:cellnr:)Transport La Palma - Tenerife
(:cell:)
(:cell:)
(:cell:)
(:cell:)
Ligne 7 ajoutée:
(:cell:)
Ligne 12 ajoutée:
(:cell:)
Ligne 18 ajoutée:
(:cell:)
Ligne 22 ajoutée:
(:cell:)
Ligne 27 ajoutée:
(:cell:)
Ligne 32 ajoutée:
(:cell:)
Ligne 34 modifiée:
(:cellnr:)
en:
(:cellnr:)Transport La Palma - Tenerife
Ligne 38 ajoutée:
(:cell:)
Lignes 24-27 ajoutées:
(:cellnr:)Essence observations
(:cell:)30 jours
(:cell:)1000$
(:cell:)1000$ FQRNT
Lignes 16-19 modifiées:
(:cellnr:)Location minivan observation 20 jours
(:cell:)1 mois
(:cell:)1500$
(:cell:)1500$ FQRNT
en:
(:cellnr:)Location minivan observations Tenerife 15 jours
(:cell:)15 jours
(:cell:)1000$?
(:cell:)1000$ FQRNT
(:cellnr:)Hébergement La Palma 15 jours
(:cell:)15 jours
(:cell:)1000$?
(:cell:)1000
$ FQRNT
Lignes 16-19 ajoutées:
(:cellnr:)Location minivan observation 20 jours
(:cell:)1 mois
(:cell:)1500$
(:cell:)1500$ FQRNT
Lignes 12-15 ajoutées:
(:cellnr:)Transport international famille
(:cell:)-
(:cell:)5000$
(:cell:)
Lignes 7-12 ajoutées:
(:cell:)Financement
(:cellnr:)Transport international Martin
(:cell:)-
(:cell:)1200$
(:cell:)1200$ FQRNT?
(:cellnr:)
Ligne 13 supprimée:
(:cellnr:)
Ligne 15 supprimée:
(:cell:)
Lignes 3-7 modifiées:
(:table border=1 width=80%:)
en:
(:table border='1' width='80%':)
(:cellnr:)Tâche
(:cell:)Durée
(:cell:)Coût
(:cell
:)
Ligne 10 supprimée:
(:cellnr:)
Ligne 11 supprimée:
(:cell:)
Ligne 3 modifiée:
(:table now border=1 width=80%:)
en:
(:table border=1 width=80%:)
Lignes 1-10 ajoutées:
!Sabbatique Tenerife 2009

(:table now border=1 width=80%:)
(:cellnr:)
(:cell:)
(:cell:)
(:cellnr:)
(:cell:)
(:cell:)
(:tableend:)
GlossyBlue theme adapté par David Gilbert et Martin Aubé
Powered by PmWiki